超新星残骸W28領域における ガンマ線放射と星間ガス

吉池 智史(名大理)

福田 達哉, 佐野 栄俊, 鳥居 和史, 早川 貴敬, 山本 宏昭, 立原 研悟, 福井 康雄(名大理)

- 宇宙線の加速と伝搬
 - 宇宙線
 - 高エネルギー荷電粒子(10⁸⁻²⁰ eV)
 - * 陽子、電子、原子核
 - エネルギー密度~1 eV / cm³
 - 銀河宇宙線の加速
 - 加速源:超新星残骸 (SNRs)
 - 衝撃波統計加速 (DSA)
 - $E_{SN} \sim 10^{51} \text{ erg}$
 - 加速効率 ~ 1 10 %
 - → エネルギー密度を説明可
 - 加速宇宙線の逃走
 - 加速源からエネルギーに応じて、順次逃走。
 - 周辺環境(ISM, B)にも依存。
 - 宇宙線陽子による放射
 - $p(CR) + p(ISM) \rightarrow p + p + \pi^0, \pi^0 \rightarrow 2\gamma$
 - ガスに埋もれたSNRは、宇宙線加速・拡散の検証の有力候補。

SNR

p(CR)

p(ISM)

▶ 超新星残骸W28領域

▶ 超新星残骸W28領域

日本天文学会 2015年秋季年会 「ガンマ線天文台CTAで切り拓く次世代の高エネルギー天文学」(2015年9月9日@甲南大学)

4

▶ 超新星残骸W28領域

コントア : TeV γ-ray

Aharonian et al. (2008)

- ガンマ線に対応する分子ガスの存在。

 → SNRから逃走した宇宙線陽子起源の可能性を示唆。
- 星間分子ガス観測:
 - + グリッドが荒く、対応する陽子成分を正確に抽出できてない。
 - + 観測範囲が狭く、ガンマ線ソース全体をカバーできてない。
- 水素原子(HI)についても考慮する必要あり。

望遠鏡	ターゲット	角度分解能/ グリッド	速度分解能	ノイズレベル
NANTEN2	^{12,13} CO(<i>J</i> =1-0)	200"/60"	1 km/s	0.3 K
	^{12,13} CO(<i>J</i> =2-1)	100"/30"	0.5 km/s	0.3 K
ATCA+Parkes [†]	HI	2.2′/40″	0.82 km/s	2.8 K

+ SGPSアーカイブデータ (McClure-Griffith et al. 2005)

▶ 分子ガス分布 - W28領域全体 -

イメージ: ¹²CO(*J*=2-1), コントア (Bold): TeV γ-ray (H.E.S.S.)

日本天文学会 2015年秋季年会 「ガンマ線天文台CTAで切り拓く次世代の高エネルギー天文学」(2015年9月9日@甲南大学)

- 7

星間陽子柱密度の導出

■ COデータを速度方向にスイープし、TeVガンマ線 に対応するガス速度範囲を決める。

- 決めた速度範囲とCO、HIデータから、分子・原子 由来の星間陽子柱密度を導出する。
 - ✓ 分子成分: $N_p(H_2) = 2 \times X_{CO} \times W_{CO(1-0)}$
 - Xco = 1.56 × 10²⁰ [cm⁻² /(K km s⁻¹)] Hunter et al. (1997)
 - ✓ 原子成分: N_p(HI) = 1.823 × 10¹⁸ × W_{HI}

星間陽子柱密度分布 [コントア: TeV γ-ray, + : HII region]

日本天文学会 2015年秋季年会 「ガンマ線天文台CTAで切り拓く次世代の高エネルギー天文学」(2015年9月9日@甲南大学)

星間陽子柱密度分布 [コントア: TeV γ-ray, +: HII region]

日本天文学会 2015年秋季年会 「ガンマ線天文台CTAで切り拓く次世代の高エネルギー天文学」(2015年9月9日@甲南大学)

10

▶ 加速宇宙線陽子エネルギー

- $W_{\rm p} \sim L_{\rm y} \times \tau_{\rm pp}$ [erg], $\tau_{\rm pp} \sim 4.5 \times 10^{15} \times (n/{\rm cm}^{-3})^{-1}$ [s]
 - *L*_v: 0.5 GeV 10 TeV
 - + H.E.S.S.のスペクトル(Aharonian et al. 2008)を外挿して使用。
 - + 全てのソースはW28と同じ距離(1.9 kpc)にあると仮定。

Source	$L_{\gamma}^{0.5 \text{ GeV} - 10 \text{ TeV}}$	$n_{\rm p}({\rm H_2})$	n _p (HI)	n _p (total)	W _p
	[10 ³⁴ erg s ⁻¹]	[cm ⁻³]	[cm ⁻³]	[cm ⁻³]	[10 ⁴⁷ erg]
North-East	7.5	630	130	760	7
South-East	4.3	840	80	920	3
South	3.3	840	80	920	2
South-West	0.82	580	110	690	0.7

- 星間陽子は分子成分が優位 (n_p(HI) / n_p(H₂) ~ 10 20 %)。
- W_pはNorth-Eastに比べ、South-East・Southは2 3分の1程度。
 - + SNRからの各ソースの距離の違いによるとも考えれる。
- SNR全体でのW_p: ~ 10⁴⁸ (NE x 4) ~ 10⁴⁹ (全立体角) erg

→ 加速効率: 0.1 - 1 %

South-Westのガンマ線起原

- 別のSNR(候補)の存在 (Brogan et al. 2006)。
- 1720 MHz OH maserが検出 (Hewitt & Yusef-Zadeh 2009)。
- OH maserの速度とCOの速度は一致($V_{LSR} = 13 \text{ km/s}$)。
- LVG解析: ガス温度 ~ 20 K > 10 K → 衝撃波相互作用による加熱の可能性。
- 力学的距離: 13 km/s → 3.2 kpc (or 13.7 kpc)
 - ・ この場合、 $W_p = 3 \times 10^{47} \text{ erg} (\text{or } 5 \times 10^{50} \text{ erg})$ 。
 - SNR1つのエネルギーとしては矛盾ない。
- W28以外のSNR起源の可能性を示唆。

▶ まとめ

- W28とその周辺のガンマ線ソースについて、CO・HI 観測データから、対応する星間陽子量を導出。
- いずれも、陽子は分子成分が優位。
- 星間陽子の存在・加速宇宙線陽子のエネルギーの関係は、 逃走宇宙線陽子によるガンマ線と矛盾しない。
- ただし、South-West成分は、他のSNR起源の可能性 がある。
- CTAでの期待(宇宙線拡散の観点で)
 - ・ 高エネルギー帯域観測 → 拡散係数をより制限。
 - ・ 分解能の向上 → 星間ガスとの詳細比較が可能。
 - ・ 高感度化 → W28、W44のような検証例の増加による、系統的な調査。