Very-high-energy GRB events in novel Fermi-LAT photon data and their emission mechanism

Mitsunari Takahashi 髙橋 光成

Institute for Cosmic-ray Research Cherenkov Cosmic Gamma-ray Group La Palma, 12 Oct 2018

Overview

- Introduction
- Emission processes
- Fermi-LAT CalOnly classes
- Search for new GRB photon candidates
- Likelihood analysis
- Prospect of CTA
- Conclusions

Overview

- Introduction
- Emission processes
- Fermi-LAT CalOnly classes
- Search for new GRB photon candidates
- Likelihood analysis
- Prospect of CTA

Summary

Introduction

Emission processes

Introduction

- Emission processes
- Fermi-LAT CalOnly classes
- Search for new GRB photon candidates
- Likelihood analysis
- Prospect of CTA
- Conclusions

Synchrotron Emission from External-Shocked Fluid

Synchrotron Model

GRB 090510A

 Observations were well explained by synchrotron from external shocks

Photon Energy Challenging for Synchrotron Extend up to >10 ks after burst Events within 1.0 deg from LAT-catalogued GRBs with localization error smaller the □ □ 080916C □ □ 130907A o o 140928A o o 160422A □ □ 090510A 🔷 🔷 160509A □ □ 090902B ♦ 160521B I 131231A Unpublished Energy [Ge¹ **D** 090926A o o 140206B o _0 _150403A 🔷 🔷 160623A 100116A o o 140619₿ o 0 150902A ♦ 160625B □ □ 100414A o o 140810A o o 160310A ♦ ♦ 171010A □ □ 130427A 40 30 20 10^{1} 10^{2} 10^{3} 10 10⁻¹ **Time from trigger [s]** Maximum synchrotron energy $h\nu_{sync} \lesssim 50\Gamma\,{ m MeV}$ $\lesssim 3 \left(\frac{E}{10^{53} \text{erg}}\right)^{1/8} \left(\frac{n_1}{\text{cm}^3}\right)^{-1/8} \left(\frac{t}{\text{ks}}\right)^{-3/8} \text{GeV}$

Synchrotron Self-Compton Emission

Closure Relations

Introduction

- Emission processes
- Fermi-LAT CalOnly classes
- Search for new GRB photon candidates
- Likelihood analysis
- Prospect of CTA

Summary

Fermi Large Area Telescope (LAT)

Anti-Coincidence Detector (ACD)

Energy range

- from ~20 MeV to > 300 GeV
- Effective area
 - >0.8 m² for normal incidence

Field of view

• 2.4 sr for 1 GeV

Sensitivity is limited by signal statistics above 10 GeV

Calorimeter-Only Classes

CalOnly event

z

Background Rejection

Performance evaluated with MC

Search for new GRB photon candidates

Search for new GRB photon candidates

- Introduction
- Emission processes
- Fermi-LAT CalOnly classes
- Search for new GRB photon candidates
- Likelihood analysis
- Prospect of CTA
- Conclusions

CalOnly Photons

GRB Photon Search in CalOnly class

Analyze CalOnly data of 24 GRBs with standard events above 10 GeV

Four photon candidates coincident with GRBs

Standard and CalOnly events above 50 GeV Events within 1.0 deg from LAT-catalogued GRBs with localization error smaller than 0.3 deg

CalOnly Photons

GRB Photon Candidates

Focus on these two GRBs

CalOnly Photons

Synchrotron Energy Limit

Likelihood analysis

Constraints on spectral vs. temporal indices

- Introduction
- Emission processes
- Fermi-LAT CalOnly classes
- Search for new GRB photon candidates
- Likelihood analysis
- Prospect of CTA

Summary

Likelihood analysis

Likelihood Analysis

Time-joint analysis

- Combine likelihood in time bins after T95 of Fermi-GBM
- Scan over normalization at 100 s vs. spectral index β vs. temporal index α

Spectral model

- Power-law with EBL
- Temporal model
 - Normalization: Power-law decay

Scan whether each parameter set explains both spectrum and light curve $\int \int \int \int dt dt$ Constraints on β vs. a

for comparison with closure relations

GRB 090926A Power-law Spectrum Model

Fig. 8.1 (P119)

Model: Sari+ 98, Panaitescu+ 00, Sari+ 01

Model: Sari+ 98, Panaitescu+ 00, Sari+ 01

GRB 160509A Power-law Spectrum Model

Likelihood analysis > GRB 160509A

Comparison with Closure Relations

Comparison with Closure Relations

Comparison with Closure Relations

Prospect of CTA

Introduction

- Emission processes
- Fermi-LAT CalOnly classes
- Search for new GRB photon candidates
- Likelihood analysis
- Prospect of CTA

Summary

Prospect of CTA

Cherenkov Telescope Array

- Imaging Atmospheric Cherenkov
 Telescope in next-generation
- Sites: La Palma, Spain (North) and Paranal, Chille (South)
- Three telescope sizes
 - Large-Sized Telescope (LST)
 - Mirror: 23 m in diameter
 - Responsible for 20 GeV- 200 GeV
 - Repositioning time: <20 seconds</p>
 - Medium-Sized Telescope (MST)
 - Small-Sized Telescope (SST)

Energy threshold: 20 GeV

Effective area: ~3×10⁴ m at 20 GeV More than four orders of magnitude larger than LAT

Toward Detection by IACTs

Extrapolation to CTA energy range

- Extrapolate SSC spectrum with most plausible p from 1 GeV to CTA energy range
 - EBL model: Franceschini et al. 2008
- ✦ Sensitivity curve: Maier et al. 2017

Toward Detection by IACTs

Extrapolation to CTA energy range

- Extrapolate SSC spectrum with most plausible
 - EBL model: Franceschini *et al.* 2008
- ✦ Sensitivity curve: Maier et al. 2017

Detailed spectrum and long-term light curve will be obtained

33

Conclusions

Introduction

- Emission processes
- Fermi-LAT CalOnly classes
- Search for new GRB photon candidates
- Likelihood analysis
- Prospect of CTA

Summary

Conclusions

Conclusions

✦ LAT data without TKR information (CalOnly classes) was proved to be usable for transients

- Residual background is one order of magnitude suppressed by optimization
- ~50% increase in statistics above 50 GeV
- ✦ Four photon candidates coincident with GRBs were detected
 - Including event with 252 GeV in GRB-frame, which is highest ever detected
- ♦ GRB 090926A and GRB 160509A
 - Too high energy for synchrotron from simple external shock
 - First detailed quantification of consistency between observed LAT (α , β) vs. closure relations
 - SSC dominating LAT band is only one consistent and natural solution
 - Most clearly described evidences of SSC emission from afterglow ever
- ✦ Jet energy estimation based on synchrotron-alone model turned out to be doubtful
- CTA will provide long-term light curve with little uncertainty and enable us to test SSC decisively