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Synchrotron Emission from  
External-Shocked Fluid

Emission Processes
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Synchrotron Model

✦ Observations were well explained by synchrotron from 
external shocks
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Emission Processes

Spectra

[De Pasquale+ 10]

234 P. Kumar and R. Barniol Duran

Figure 6. Shown in this figure are data for GRB 090510 obtained by Fermi/LAT (>100 MeV), Swift/XRT (X-ray) and Swift/UVOT (optical) data, and a fit to
all these data by the external forward shock model (solid lines). The jet break seen in X-ray has been modelled with a power law, ∝ t−p; the optical light curve
after the jet break should show a shallower decay ∝ t−1/3, because at this time νopt < νi, but then it slowly evolves to an asymptotic decay ∝ t−p at later times
(Rhoads 1999). The LAT (X-ray) data are from De Pasquale et al. (2010) (Evans et al. 2007, 2009) and have been converted to flux density at 100 MeV (1 keV)
using the average spectral index mentioned in the text (Section 3.2). The optical data (squares) are from De Pasquale et al. (2009). Triangles mark upper limits
in the X-ray and optical light curves.

which is constraint (iii). And lastly, constraint (iv) is that the peak
synchrotron flux should equal the flux at the peak of the optical light
curve, i.e.

fp ∼ 12 mJy E53n
1/2ϵ

1/2
B,−2 = 100 µJy . (18)

Just as was done for GRB090902B, constraint (ii) gives a lower
limit on ϵB, which in the case of this GRB is not too useful. Instead,
we can solve ϵe from (16) and substitute it in (17), which gives

ϵB = 1 × 10−6

E
1/3
53 n2/3(1 + Y )4/3

, (19)

consistent with the numerical calculation presented in Fig. 5. Also,
with this last expression and using (18), we find that the CSM
density for this GRB is

n ∼ 0.3 cm−3 (1 + Y )4E−5
53 , (20)

which is also consistent with the fact that we only find numerical
solutions with CSM densities lower than ∼0.1 cm−3.

For the ES parameters of this burst, the cooling frequency at 100 s
can be estimated to be

νc ∼ 76 eV E
−1/2
53 n−1ϵ

−3/2
B,−2(1 + Y )−2, (21)

and substituting n from (18) gives νc ∼ 1 MeV E
3/2
53 ϵ

−1/2
B,−2(1 +Y )−2.

Thus, for ϵB ∼ 10−5 we find νc ∼ 30 MeV. The injection frequency
at 100 s is given by

νi ∼ 240 eV E
1/2
53 ϵ

1/2
B,−2ϵ

2
e,−1, (22)

and substituting ϵe from (16) one finds νi ∼ 250 eV E−1.07
53 ϵ0.36

B,−5.
These values of ν i and νc are consistent with the values obtained
from detailed numerical calculations and reported in Fig. 5 caption.

The detailed numerical results of the parameter search can be
found in Fig. 5; the subspace of the 4D parameter space allowed
by the data for GRB 090510 is projected on the 2D ϵB-n plane,
which is a very convenient way of looking at the allowed subspace.
Note that all the available data for GRB 090510 can be fitted by the
ES model and that the value of n allowed by the data is less than
0.1 cm−3, which is in keeping with the low density expected in the
neighbourhood of short bursts. Moreover, ϵB for the entire allowed
part of the 4D subspace is small, and its magnitude is consistent

with what one would expect for the CSM magnetic field of strength
!30 µG that is shock compressed by the blast wave (Fig. 5). The
ES shock model provides a consistent fit to the data from optical to
>102 MeV bands as can be clearly seen in Fig. 6. The ES parameters
found for this GRB are given in Fig. 5 caption.

3.3 GRB 080916C

The Fermi/LAT and GBM observations for this burst have been
presented in Abdo et al. (2009a). For this burst, the optical and
X-ray observations were started about 1 d after the burst, and both
bands are consistent with f ν(t) ∝ ν−0.5±0.3 t−1.3±0.1 (Greiner et al.
2009).

The fact that the optical light curve is decaying at t−1.3 means
that ν i is below the optical band at 1 d, because if ν i is above the
optical band, then the light curve should be rising at ∝ t1/2 (as in
the case of GRB090510). Moreover, the shallow spectral index in
the Swift/XRT band (βx < 1) suggests that νc > 10 keV at 1 d. The
X-ray and optical data together yield a spectral index of 0.65 ±
0.03, and therefore p = 2.3 ± 0.06 which is consistent with the
Fermi/LAT spectrum (see Table 1). The value of p can be used to
calculate the time dependence of the light curve, and that is found
to be t−0.98 (t−1.48±0.05) for s = 0 (s = 2) CSM. Thus, s = 2 CSM
is preferred by the late-time optical and X-ray afterglow data (Gao
et al. 2009; Kumar & Barniol Duran 2009; Zou, Fan & Piran 2009).

Using the early >100 MeV data only, we determine the ES model
parameters. With these parameters, we can then predict the X-ray
and optical fluxes at late times, i.e. the forward direction approach.
The constraints that should be satisfied are: (i) the ES flux at 100
MeV and 150 s should match the observed value (Table 2); (ii) νc <

100 MeV to be consistent with the observed spectrum; and (iii) the
ES flux at 150 s should be smaller than the observed value to allow
the 100 keV flux to decay rapidly as observed. These constraints
are the same as the ones presented for the case of GRB090902B
and the analytical approach is the same as the one presented on
Section 3.1, therefore, we omit the details here. The ES parameters
obtained numerically can be found in fig. 2 of Kumar & Barniol
Duran (2009). With these parameters the X-ray and optical flux at

C⃝ 2010 The Authors. Journal compilation C⃝ 2010 RAS, MNRAS 409, 226–236
Downloaded from https://academic.oup.com/mnras/article-abstract/409/1/226/1023802
by University of Tokyo Library user
on 10 January 2018

Light curves

[Kumar+ 10]

E = (1-4)×1055 erg, 
p ~ 2.2, εe=0.1-0.7, 
εBn1-2/3~1E-6

Break

Break

GRB 090510A



Photon Energy Challenging for 
Synchrotron
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Table 7.1: List of the LAT-detected GRBs which were localized with an error smaller than 0◦.3 and
accompanied by standard P8R2 SOURCE class photons above 10 GeV

GRB #Photons Highest energy photon Red- Duration [s]
> 10 GeV T − T0 [s] E [GeV] shifta T90 T50

080916C 2 40.5 27 4.35 63.0± 0.8 32.0± 0.7
090510A 1 0.8 30 0.903 1.0± 0.1 0.3± 0.1
090902B 7 331.9 22 1.822 19.3± 0.3 9.0± 0.2
090926A 2 24.8 19 2.1062 13.8± 0.3 6.5± 0.1
100116A 2 379.0 33 103± 1 5.5± 0.2
100414A 2 33.4 30 1.368 26± 2 13.2± 0.3
130427A 18 243.1 94 0.3399 138± 3 4± 1
130907A b 1 17227.0 51 1.238 364± 5 59.7± 0.3
131018B 1 243.9 15 (4± 1)× 101 13± 2
131231A 2 110.3 48 0.642 31± 1 9.7± 0.4
140206B 2 75493.1 29 147± 4 25± 1
140619B 1 0.6 23 2.8± 0.8 1.0± 0.7
140810A 1 1490.2 15 81.7± 0.6 22.3± 0.4
140928A 2 2554.7 52 18± 7 5.4± 0.7
141028A 2 37826.0 11 2.33 31± 2 8.2± 0.7
141222A 2 0.7 20 2.8± 0.3 0.77± 0.09
150403A 1 25108.8 10 2.06 22.3± 0.8 6.4± 0.6
150902A 1 97.5 11 13.6± 0.4 4.6± 0.4
160310A 1 5884.5 27 18.2± 0.7 8.4± 0.2
160422A 1 769.6 12 12.3± 0.4 4.6± 0.4
160509A 3 76.5 52 1.17 370± 1 55± 1
160521B 1 422.6 13 2.8± 0.6 1.0± 0.4
160623A 1 12038.5 18 0.367 108± 9 51± 4
160625B 1 346.2 15 1.406 (4.5± 0.1)× 102 12.0± 0.4

aThe redshift values were taken from [153].
bNot GBM-triggered. T0, T90 and T50 were taken from the Swift-BAT catalogue [152].
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Figure 7.1: Observed energy and time of the P8R2 SOURCE V6 events within 1◦.0 from the LAT-
catalogued GRBs above 10 GeV.
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Synchrotron Self-Compton Emission

Emission Processes

!9

log νFν

log ννm νc νmIC 

=2γm2νm

νcIC 

=2γc2νc

Spectral indices: 
those of synchrotron 

are reproduced

Magnetic field Electron

Synchrotron Inverse-Compton



Closure Relations

Emission Processes
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Fermi Large Area Telescope (LAT)

✦ Energy range 

• from ~20 MeV to > 300 GeV 

✦ Effective area 

• >0.8 m2 for normal incidence 

✦ Field of view 

• 2.4 sr for 1 GeV
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Fermi-LAT CalOnly classes

Anti-Coincidence 
Detector (ACD)

Calorimeter (CAL)

Tracker (TKR)

Sensitivity is 
limited by signal 
statistics above 
10 GeV

Atwood+ 09



Calorimeter-Only Classes
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Fermi-LAT CalOnly classes
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Background Rejection
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Fermi-LAT CalOnly classes

Boosted 
Decision Tree

Event data

Gamma-ray-like Cosmic-ray-like

• Find best combination of separators 
• Tune configuration 
• Introduce new separators

Optimize for CalOnly events

•Veto of ACD 
‣ACD hit count, correlation with 

shower axis, etc. 
•Shower profile in TKR and CAL 
‣ Transversal RMS, longitudinal 

maximum, etc.



Performance evaluated with MC

Fermi-LAT CalOnly classes
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Acceptance

6.3.2 Acceptance

The acceptance is the effective area integrated over the FoV. It yields the signal statistics we can

get from a certain source during a long observation. It depends on E and θ. The dependence on

only E is plotted in Fig. 6.7. The peak locates around 100 GeV. At the peak, the acceptance of

the CalOnly R100 and R003 corresponds to ∼ 70% and ∼ 40% of the standard SOURCE class,

respectively. These fractions of photons are recovered for analysis on top of the conventional data.

This is a significant improvement because, at 50 - 100 GeV, the LAT sensitivity is limited by statistics

for most of the sources, hence the gain in acceptance leads to a gain in sensitivity. The dependence

Unpublished

Figure 6.7: Top: Acceptance as a function of the event energy E in log-scale, from 22.3 GeV to 562
GeV. Bottom: Ratio of the CalOnly acceptance relative to the standard P8R2 SOURCE class.

on E and θ are plotted in Fig. 6.8. The acceptance is basically larger at smaller off-axis angles

because most of the MVA separators work better. Exceptionally, the acceptance is suppressed for

small θ in the energy range below 60 GeV because the the deposited energy does not reach the

threshold 20 GeV if a fraction of the energy leaks from the CAL. The acceptance for cos θ < 0.2 is

almost zero, and hence I introduced one of the precuts, cos θ ≥ 0.2 (cf. Table 6.1) for simplicity.

6.3.3 Point spread functions

The PSFs strongly depend on E and θ as plotted in Fig. 6.9. They are better for larger θ because the

CAL is geometrically thicker, and thus the tracks become longer. The θ-integrated PSFs distribute

from two to four degrees as plotted in Fig. 6.10. These are more than one order of magnitude
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Figure 6.9: PSF (68% containment) in degrees of the CalOnly R010 as a function of logE vs. cos θ.

Unpublished

Figure 6.10: Top: PSF (68% containment) in degrees as a function of E in log-scale. Bottom: The
ratio of the CalOnly PSF relative to the standard SOURCE class.
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PSF

~50% increase in 
statistics from ~50 to 

~300 GeV

~30 times worse PSF
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GRB Photon Search in CalOnly class
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CalOnly Photons
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Highest GRB-
frame energy 

ever coincident 
with GRBs

Focus on these 
two GRBs
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Synchrotron Energy Limit

CalOnly Photons
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Likelihood Analysis

✦ Time-joint analysis 

• Combine likelihood in time bins 
after T95 of Fermi-GBM 

• Scan over normalization at 100 
s vs. spectral index β vs. 
temporal index α 

✦ Spectral model  

• Power-law with EBL 

✦ Temporal model  

• Normalization: Power-law decay
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Likelihood analysis

Constraints on β vs. α 
for comparison with 

closure relations

Scan whether each 
parameter set explains both 

spectrum and light curve



GRB 090926A  
Power-law Spectrum Model

Likelihood analysis > GRB 090926A
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Fig. 8.1 (P119)
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Figure 9.2: Comparison of the the result of the 3D parameter scan of GRB 090926A (Fig. 8.2) and the
closure relations. The contours and the points with error bars are identical although they are plotted
in four plots dedicated to the ISM-/wind-like CBM density profile and the fast-/slow-cooling regimes.
The black contours represent 1, 2, 3σ confidence regions determined by the time-joint analysis of the
LAT afterglow data. The black points represent the result of fitting the Swift-XRT light curve
of [119]. The rainbow lines and gray dots exhibit the closure relations described in § 4.6.1. The color
indicates the spectral index p of the injected electron spectrum. The text labels indicate the emission
mechanisms (“S”: synchrotron, “C”: SSC) and broken power-law segments (“1”: the highest-energy
segment, “2”: the second-highest-energy segment). The “R” and “*” after these labels indicate the
cases of radiative evolution and the cases in which the energy losses are dominated by IC radiation,
respectively.
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Figure 9.2: Comparison of the the result of the 3D parameter scan of GRB 090926A (Fig. 8.2) and the
closure relations. The contours and the points with error bars are identical although they are plotted
in four plots dedicated to the ISM-/wind-like CBM density profile and the fast-/slow-cooling regimes.
The black contours represent 1, 2, 3σ confidence regions determined by the time-joint analysis of the
LAT afterglow data. The black points represent the result of fitting the Swift-XRT light curve
of [119]. The rainbow lines and gray dots exhibit the closure relations described in § 4.6.1. The color
indicates the spectral index p of the injected electron spectrum. The text labels indicate the emission
mechanisms (“S”: synchrotron, “C”: SSC) and broken power-law segments (“1”: the highest-energy
segment, “2”: the second-highest-energy segment). The “R” and “*” after these labels indicate the
cases of radiative evolution and the cases in which the energy losses are dominated by IC radiation,
respectively.
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Likelihood analysis > GRB 090926A

Contours: LAT 
• 23 s - 96 ks 
• 1,2, and 3 σ

log νFν

log ν

“S2” “S1” “C2”
“C1”

νm νc νmIC νcIC

Points: Swift-XRT 
• Cenko et al. 11 
• 0.5 - 10 days 
• 1 σ

C2

Model: Sari+ 98, Panaitescu+ 00, Sari+ 01

Unpublished

“S1*” and “C1*” are cases when cooling is 
dominated by SSC, rather than synchrotron
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Figure 9.2: Comparison of the the result of the 3D parameter scan of GRB 090926A (Fig. 8.2) and the
closure relations. The contours and the points with error bars are identical although they are plotted
in four plots dedicated to the ISM-/wind-like CBM density profile and the fast-/slow-cooling regimes.
The black contours represent 1, 2, 3σ confidence regions determined by the time-joint analysis of the
LAT afterglow data. The black points represent the result of fitting the Swift-XRT light curve
of [119]. The rainbow lines and gray dots exhibit the closure relations described in § 4.6.1. The color
indicates the spectral index p of the injected electron spectrum. The text labels indicate the emission
mechanisms (“S”: synchrotron, “C”: SSC) and broken power-law segments (“1”: the highest-energy
segment, “2”: the second-highest-energy segment). The “R” and “*” after these labels indicate the
cases of radiative evolution and the cases in which the energy losses are dominated by IC radiation,
respectively.
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Figure 9.2: Comparison of the the result of the 3D parameter scan of GRB 090926A (Fig. 8.2) and the
closure relations. The contours and the points with error bars are identical although they are plotted
in four plots dedicated to the ISM-/wind-like CBM density profile and the fast-/slow-cooling regimes.
The black contours represent 1, 2, 3σ confidence regions determined by the time-joint analysis of the
LAT afterglow data. The black points represent the result of fitting the Swift-XRT light curve
of [119]. The rainbow lines and gray dots exhibit the closure relations described in § 4.6.1. The color
indicates the spectral index p of the injected electron spectrum. The text labels indicate the emission
mechanisms (“S”: synchrotron, “C”: SSC) and broken power-law segments (“1”: the highest-energy
segment, “2”: the second-highest-energy segment). The “R” and “*” after these labels indicate the
cases of radiative evolution and the cases in which the energy losses are dominated by IC radiation,
respectively.
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Figure 9.2: Comparison of the the result of the 3D parameter scan of GRB 090926A (Fig. 8.2) and the
closure relations. The contours and the points with error bars are identical although they are plotted
in four plots dedicated to the ISM-/wind-like CBM density profile and the fast-/slow-cooling regimes.
The black contours represent 1, 2, 3σ confidence regions determined by the time-joint analysis of the
LAT afterglow data. The black points represent the result of fitting the Swift-XRT light curve
of [119]. The rainbow lines and gray dots exhibit the closure relations described in § 4.6.1. The color
indicates the spectral index p of the injected electron spectrum. The text labels indicate the emission
mechanisms (“S”: synchrotron, “C”: SSC) and broken power-law segments (“1”: the highest-energy
segment, “2”: the second-highest-energy segment). The “R” and “*” after these labels indicate the
cases of radiative evolution and the cases in which the energy losses are dominated by IC radiation,
respectively.
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Figure 9.2: Comparison of the the result of the 3D parameter scan of GRB 090926A (Fig. 8.2) and the
closure relations. The contours and the points with error bars are identical although they are plotted
in four plots dedicated to the ISM-/wind-like CBM density profile and the fast-/slow-cooling regimes.
The black contours represent 1, 2, 3σ confidence regions determined by the time-joint analysis of the
LAT afterglow data. The black points represent the result of fitting the Swift-XRT light curve
of [119]. The rainbow lines and gray dots exhibit the closure relations described in § 4.6.1. The color
indicates the spectral index p of the injected electron spectrum. The text labels indicate the emission
mechanisms (“S”: synchrotron, “C”: SSC) and broken power-law segments (“1”: the highest-energy
segment, “2”: the second-highest-energy segment). The “R” and “*” after these labels indicate the
cases of radiative evolution and the cases in which the energy losses are dominated by IC radiation,
respectively.
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another component besides the synchrotron.

Comparison with the closure relations

The constraint by the LAT is weaker than the case of 090926A because of the later beginning of the

afterglow phase. All single spectral domains with β softer than 1.0 are inconsistent with the LAT

constraints by 2σ, and only the ”S2” and ”C2” survived.
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Figure 9.7: Comparison of the results of the 3D parameter scan of GRB 160509A (Fig. 8.4) and
the closure relations. The contours and crosses are identical although they are plotted in four plots
dedicated for the ISM-/wind-like CBM density profile and fast/slow-cooling regimes. The symbols
are the same as Fig. 9.2. The black points are from Swift-XRT light curve fitting of [172].
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Figure 9.2: Comparison of the the result of the 3D parameter scan of GRB 090926A (Fig. 8.2) and the
closure relations. The contours and the points with error bars are identical although they are plotted
in four plots dedicated to the ISM-/wind-like CBM density profile and the fast-/slow-cooling regimes.
The black contours represent 1, 2, 3σ confidence regions determined by the time-joint analysis of the
LAT afterglow data. The black points represent the result of fitting the Swift-XRT light curve
of [119]. The rainbow lines and gray dots exhibit the closure relations described in § 4.6.1. The color
indicates the spectral index p of the injected electron spectrum. The text labels indicate the emission
mechanisms (“S”: synchrotron, “C”: SSC) and broken power-law segments (“1”: the highest-energy
segment, “2”: the second-highest-energy segment). The “R” and “*” after these labels indicate the
cases of radiative evolution and the cases in which the energy losses are dominated by IC radiation,
respectively.
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In addition, one standard-class event was detected at 70 ks. The reconstructed energy is 29 GeV,

and the deposited energy is 19 GeV. The synchrotron limit at this time is 1.0 GeV. Hence, this

event, which arrived in late time compared with the typical plateau phase (cf. § 3.4.3) also requires

another component besides the synchrotron.

Comparison with the closure relations

The constraint by the LAT is weaker than the case of 090926A because of the later beginning of the

afterglow phase. All single spectral domains with β softer than 1.0 are inconsistent with the LAT

constraints by 2σ, and only the ”S2” and ”C2” survived.
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Figure 9.7: Comparison of the results of the 3D parameter scan of GRB 160509A (Fig. 8.4) and
the closure relations. The contours and crosses are identical although they are plotted in four plots
dedicated for the ISM-/wind-like CBM density profile and fast/slow-cooling regimes. The symbols
are the same as Fig. 9.2. The black points are from Swift-XRT light curve fitting of [172].
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Figure 9.2: Comparison of the the result of the 3D parameter scan of GRB 090926A (Fig. 8.2) and the
closure relations. The contours and the points with error bars are identical although they are plotted
in four plots dedicated to the ISM-/wind-like CBM density profile and the fast-/slow-cooling regimes.
The black contours represent 1, 2, 3σ confidence regions determined by the time-joint analysis of the
LAT afterglow data. The black points represent the result of fitting the Swift-XRT light curve
of [119]. The rainbow lines and gray dots exhibit the closure relations described in § 4.6.1. The color
indicates the spectral index p of the injected electron spectrum. The text labels indicate the emission
mechanisms (“S”: synchrotron, “C”: SSC) and broken power-law segments (“1”: the highest-energy
segment, “2”: the second-highest-energy segment). The “R” and “*” after these labels indicate the
cases of radiative evolution and the cases in which the energy losses are dominated by IC radiation,
respectively.
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Model: Sari+ 98, Panaitescu+ 00, Sari+ 01

In addition, one standard-class event was detected at 70 ks. The reconstructed energy is 29 GeV,

and the deposited energy is 19 GeV. The synchrotron limit at this time is 1.0 GeV. Hence, this

event, which arrived in late time compared with the typical plateau phase (cf. § 3.4.3) also requires

another component besides the synchrotron.

Comparison with the closure relations

The constraint by the LAT is weaker than the case of 090926A because of the later beginning of the

afterglow phase. All single spectral domains with β softer than 1.0 are inconsistent with the LAT

constraints by 2σ, and only the ”S2” and ”C2” survived.
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Figure 9.7: Comparison of the results of the 3D parameter scan of GRB 160509A (Fig. 8.4) and
the closure relations. The contours and crosses are identical although they are plotted in four plots
dedicated for the ISM-/wind-like CBM density profile and fast/slow-cooling regimes. The symbols
are the same as Fig. 9.2. The black points are from Swift-XRT light curve fitting of [172].
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Figure 9.2: Comparison of the the result of the 3D parameter scan of GRB 090926A (Fig. 8.2) and the
closure relations. The contours and the points with error bars are identical although they are plotted
in four plots dedicated to the ISM-/wind-like CBM density profile and the fast-/slow-cooling regimes.
The black contours represent 1, 2, 3σ confidence regions determined by the time-joint analysis of the
LAT afterglow data. The black points represent the result of fitting the Swift-XRT light curve
of [119]. The rainbow lines and gray dots exhibit the closure relations described in § 4.6.1. The color
indicates the spectral index p of the injected electron spectrum. The text labels indicate the emission
mechanisms (“S”: synchrotron, “C”: SSC) and broken power-law segments (“1”: the highest-energy
segment, “2”: the second-highest-energy segment). The “R” and “*” after these labels indicate the
cases of radiative evolution and the cases in which the energy losses are dominated by IC radiation,
respectively.
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Likelihood analysis > GRB 160509A

log νFν

log ν

“S2” “S1” “C2”
“C1”

νm νc νmIC νcIC

LATXRT

LAT: C2 and XRT: S1 
with p~2.2 agree to 
constraints within 1σ

One example: 
E = 5×1054 erg, 
p = 2.2, εe=0.1, 
εB=3E-5, n1 = 1 cm-3
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Cherenkov Telescope Array
✦ Imaging Atmospheric Cherenkov 

Telescope in next-generation 

✦ Sites: La Palma, Spain (North) and 
Paranal, Chille (South)  

✦ Three telescope sizes 

• Large-Sized Telescope (LST) 

‣ Mirror: 23 m in diameter 

‣ Responsible for 20 GeV- 200 GeV 

‣ Repositioning time: <20 seconds 

• Medium-Sized Telescope (MST) 

• Small-Sized Telescope (SST) 
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LST-1 at 
La Palma

Effective area: ~3×104 m at 20 GeV 
More than four orders of 
magnitude larger than LAT

Energy threshold: 20 GeV



Extrapolation to CTA energy range

✦ Extrapolate SSC spectrum with most plausible p from 1 GeV to CTA energy range 

• EBL model: Franceschini et al. 2008 

✦ Sensitivity curve: Maier et al. 2017
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Toward Detection by IACTsis higher than tens of GeV. It must be noted that these sensitivity curves are for nice observational

conditions, namely, a small zenith angle and a dark sky without the moon. Keeping the energy

threshold ! 100 GeV even in bad conditions is thus important for detecting the afterglows by the

CTA. If the conditions are good, the detection is possible even after one day.

Detailed light curves enable us to differentiate the prompt and late-time flare emission with fast

variabilities from the afterglow emission with power-law decaying. On the other hand, the signals

are limited in less than one decade of the energy range, and they suffer from a strong cutoff because

of the EBL absorption. Hence, determining the spectral index likely needs the LAT data.

Unpublished

Figure 9.10: Comparison of the CTA differential sensitivity curves [177] and the extrapolation of
the energy flux of GRB090926A observed by the LAT. The abscissa is the gamma-ray energy E over
the CTA range. The ordinate is the differential count flux multiplied by E2. The binned curves
represent the sensitivity curves of the CTA. The color indicates the observation time (blue: 100 s,
green: 1,800 s, red: 18,000 s, and black: 180,000 s). The open and filled squares represent the CTA’s
northern array in La Palma and southern array in Chile, respectively. The smoothed curves are the
prediction based on the results in § 8. I took the νFν at 1 GeV with the best-likelihood value and
extrapolated it with the assumed photon spectral index Γγ = −1.7. The EBL model is Franceschini
et al. 2008 [170].

If a light curve with energy above tens of GeV exhibits fast variabilities, the origins of the vari-

abilities are attributed to the intermittent activities of the central engine. Correlations with X-ray

and optical flares could be seen if a simultaneous observation is performed in these bands. The

broadband spectra of these flares may enable us to derive the magnetic field strength and photon

density in the emission region.
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Figure 9.11: Comparison of the CTA differential sensitivity curves [177] and the extrapolation of
the energy flux of GRB160509A observed by the LAT. The symbols are the same as Fig. 9.10. The
photon spectral index Γγ = −1.6 is assumed for extrapolating the flux in the LAT band. The EBL
model is Franceschini et al. 2008 [170].
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the energy flux of GRB090926A observed by the LAT. The abscissa is the gamma-ray energy E over
the CTA range. The ordinate is the differential count flux multiplied by E2. The binned curves
represent the sensitivity curves of the CTA. The color indicates the observation time (blue: 100 s,
green: 1,800 s, red: 18,000 s, and black: 180,000 s). The open and filled squares represent the CTA’s
northern array in La Palma and southern array in Chile, respectively. The smoothed curves are the
prediction based on the results in § 8. I took the νFν at 1 GeV with the best-likelihood value and
extrapolated it with the assumed photon spectral index Γγ = −1.7. The EBL model is Franceschini
et al. 2008 [170].

If a light curve with energy above tens of GeV exhibits fast variabilities, the origins of the vari-

abilities are attributed to the intermittent activities of the central engine. Correlations with X-ray

and optical flares could be seen if a simultaneous observation is performed in these bands. The

broadband spectra of these flares may enable us to derive the magnetic field strength and photon

density in the emission region.
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Figure 9.11: Comparison of the CTA differential sensitivity curves [177] and the extrapolation of
the energy flux of GRB160509A observed by the LAT. The symbols are the same as Fig. 9.10. The
photon spectral index Γγ = −1.6 is assumed for extrapolating the flux in the LAT band. The EBL
model is Franceschini et al. 2008 [170].
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Detailed spectrum 
and long-term light curve 

will be obtained
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Conclusions
✦ LAT data without TKR information (CalOnly classes) was proved to be usable for transients 

•  Residual background is one order of magnitude suppressed by optimization 

• ~50% increase in statistics above 50 GeV 

✦ Four photon candidates coincident with GRBs were detected 

• Including event with 252 GeV in GRB-frame, which is highest ever detected 

✦ GRB 090926A and GRB 160509A 

• Too high energy for synchrotron from simple external shock 

• First detailed quantification of consistency between observed LAT (α,β) vs. closure relations 

• SSC dominating LAT band is only one consistent and natural solution 

• Most clearly described evidences of SSC emission from afterglow ever 

✦ Jet energy estimation based on synchrotron-alone model turned out to be doubtful 

✦ CTA will provide long-term light curve with little uncertainty and enable us to test SSC 
decisively
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