CTA as a γ-ray probe for dark matter structures: Searching for the smallest clumps & the largest clusters

Moritz Hütten (MPP Munich) for the CTA consortium

"The extreme Universe viewed in very-highenergy gamma rays 2018", La Palma, 12.10.2018

1. Introduction

- 2. Dark Galactic DM clumps
- 3. Galaxy clusters

1. Introduction

Reticulum II, 1504.03060

Dwarf galaxies

Reticulum II, 1504.03060

Milky Way-like galaxies

Reticulum II, 1504.03060

Reticulum II, 1504.03060

Galaxy clusters

Chandra/HST image of Abell 1689

The dark matter \leftrightarrow y-ray connection: indirect detection

The dark matter \leftrightarrow y-ray connection: indirect detection

The dark matter \leftrightarrow y-ray connection: indirect detection

Springel et al. (2005) Diemand, Kuhlen, Madau (2006) color code: brighter = denser

Springel et al. (2005) Diemand, Kuhlen, Madau (2006) color code: brighter = denser

 $\frac{1}{\Delta_{f^*}\Delta_{g} \ge j t}$ Max-Planck-Institut für Physik

M. Hütten, The extreme Universe 2018, La Palma | MPP

Springel et al. (2005) Diemand, Kuhlen, Madau (2006) color code: brighter = denser

Springel et al. (2005) Diemand, Kuhlen, Madau (2006) color code: brighter = denser

 $\log (\gamma$ -ray intensity from DM annihilation), Galactic coordinates

synthetic map calculated with CLUMPY 1806.08639

 $\log (\gamma$ -ray intensity from DM annihilation), Galactic coordinates

synthetic map calculated with CLUMPY

strong signal
 γ-ray backgrounds
 (Silk and Bloemen, 1987,...)

+ no background

- lower fluxes 1504.02048, 1408.0002,

 $\log (\gamma$ -ray intensity from DM annihilation), Galactic coordinates

synthetic map calculated with CLUMPY

- lower fluxes

1408.0002,

 $\log (\gamma$ -ray intensity from DM annihilation), Galactic coordinates

synthetic map calculated with CLUMPY

+ no background

- lower fluxes

1408.0002,

 $\log (\gamma$ -ray intensity from DM annihilation), Galactic coordinates

synthetic map calculated with CLUMPY

1504.02048, 1408.0002,

Max-Planck-Institut für Physil

-

 $\log (\gamma$ -ray intensity from DM annihilation), Galactic coordinates

synthetic map calculated with CLUMPY

Annihilation

$$\frac{\mathrm{d}\Phi_{\gamma}^{\mathrm{ann.}}}{\mathrm{d}E_{\gamma}} = \frac{1}{4\pi} \frac{\langle \sigma v \rangle}{2m_{\chi}^2} \times \frac{\mathrm{d}N_{\gamma}}{\mathrm{d}E_{\gamma}} \times \int_{\Delta\Omega} \int_{l.o.s.} \rho_{\mathrm{DM}}^2 \,\mathrm{d}l \,\mathrm{d}\Omega \qquad \qquad \chi \bigvee \int_{\chi} \int_{\chi} \mathcal{S}_{\mathrm{SM}} \mathcal{S}_{\mathrm{SM}}$$

$$\frac{\mathrm{d}\Phi^{\,\mathrm{dec.}}}{\mathrm{d}E_{\gamma}} = \frac{1}{4\pi} \, \frac{1}{\tau_{\mathrm{DM}} \, m_{\chi}} \times \frac{\mathrm{d}N_{\gamma}}{\mathrm{d}E_{\gamma}} \times \int_{\Delta\Omega} \int_{l.o.s.} \rho_{\mathrm{DM}} \mathrm{d}l \mathrm{d}\Omega \qquad \chi - \zeta$$

· SM

Flux searched for with γ -ray telescope

Annihilation

$$\frac{\mathrm{d}\Phi_{\gamma}^{\mathrm{ann.}}}{\mathrm{d}E_{\gamma}} = \frac{1}{4\pi} \frac{\langle \sigma v \rangle}{2m_{\chi}^2} \times \frac{\mathrm{d}N_{\gamma}}{\mathrm{d}E_{\gamma}} \times \int_{\Delta\Omega} \int_{l.o.s.} \rho_{\mathrm{DM}}^2 \,\mathrm{d}l \,\mathrm{d}\Omega \qquad \qquad \chi \swarrow \int_{\chi} \mathcal{K} \mathsf{SM}_{\mathsf{SM}}^{\mathsf{SM}}$$

Decay

$$\frac{\mathrm{d}\Phi^{\,\mathrm{dec.}}}{\mathrm{d}E_{\gamma}} = \frac{1}{4\pi} \; \frac{1}{\tau_{\mathrm{DM}} \, m_{\chi}} \times \frac{\mathrm{d}N_{\gamma}}{\mathrm{d}E_{\gamma}} \times \int_{\Delta\Omega} \int_{l.o.s.} \rho_{\mathrm{DM}} \mathrm{d}l \mathrm{d}\Omega \qquad \chi - \chi_{\mathrm{SM}} \int_{\mathrm{SM}} \rho_{\mathrm{SM}} \, \frac{\mathrm{d}M_{\gamma}}{\mathrm{d}E_{\gamma}} \times \int_{\Delta\Omega} \int_{l.o.s.} \rho_{\mathrm{DM}} \mathrm{d}l \mathrm{d}\Omega \qquad \chi - \chi_{\mathrm{SM}} \int_{\mathrm{SM}} \rho_{\mathrm{SM}} \, \frac{\mathrm{d}M_{\gamma}}{\mathrm{d}E_{\gamma}} \times \int_{\Delta\Omega} \int_{l.o.s.} \rho_{\mathrm{DM}} \, \frac{\mathrm{d}M_{\gamma}}{\mathrm{d}E_{\gamma}} = 0$$

Secondary γ-rays after annihilation/decay

Annihilation

Decay

$$\frac{\mathrm{d}\Psi}{\mathrm{d}E_{\gamma}} = \frac{1}{4\pi} \frac{1}{\tau_{\rm DM} m_{\chi}} \times \left[\frac{\mathrm{d}W_{\gamma}}{\mathrm{d}E_{\gamma}}\right] \times \int_{\Delta}$$

Annihilation

$$\frac{\mathrm{d}\Phi_{\gamma}^{\mathrm{ann.}}}{\mathrm{d}E_{\gamma}} = \frac{1}{4\pi} \frac{\langle \sigma v \rangle}{2m_{\chi}^2} \times \frac{\mathrm{d}N_{\gamma}}{\mathrm{d}E_{\gamma}} \times \int_{\Delta\Omega} \int_{l.o.s.} \rho_{\mathrm{DM}}^2 \,\mathrm{d}l \,\mathrm{d}\Omega \qquad \qquad \chi \bigvee_{\chi} \bigvee_{\mathrm{SN}} \int_{\mathrm{SN}} \frac{\partial v \,\mathrm{d}l}{\partial t} \,\mathrm{d}t \,\mathrm{d}t$$

$$\frac{\mathrm{d}\Phi^{\,\mathrm{dec.}}}{\mathrm{d}E_{\gamma}} = \frac{1}{4\pi} \, \frac{1}{\tau_{\mathrm{DM}} m_{\chi}} \times \frac{\mathrm{d}N_{\gamma}}{\mathrm{d}E_{\gamma}} \times \int_{\Delta\Omega} \int_{l.o.s.} \rho_{\mathrm{DM}} \mathrm{d}l \mathrm{d}\Omega \qquad \qquad \chi - \swarrow_{\mathrm{SM}}^{\mathrm{SM}}$$

Unknown DM particle mass: parameter

Annihilation

$$\frac{\mathrm{d}\Phi_{\gamma}^{\mathrm{ann.}}}{\mathrm{d}E_{\gamma}} = \frac{1}{4\pi} \frac{\langle \sigma v \rangle}{2m_{\chi}^2} \times \frac{\mathrm{d}N_{\gamma}}{\mathrm{d}E_{\gamma}} \times \int_{\Delta\Omega} \int_{l.o.s.} \rho_{\mathrm{DM}}^2 \,\mathrm{d}l \,\mathrm{d}\Omega \qquad \qquad \chi \bigvee_{\chi} \int_{\mathrm{SM}} \int_{\mathrm{SM}} \int_{\mathrm{SM}} \frac{\mathrm{d}l}{\mathrm{d}E_{\gamma}} \,\mathrm{d}l \,\mathrm{d}\Omega$$

Decay
$$\frac{\mathrm{d}\Phi^{\,\mathrm{dec.}}}{\mathrm{d}E_{\gamma}} = \frac{1}{4\pi} \; \frac{1}{\tau_{\mathrm{DM}} m_{\chi}} \times \frac{\mathrm{d}N_{\gamma}}{\mathrm{d}E_{\gamma}} \times \left[\int_{\Delta\Omega} \int_{l.o.s.} \rho_{\mathrm{DM}} \mathrm{d}l \mathrm{d}\Omega \right]$$

$$\chi - \chi - \chi^{SM}_{SM}$$

Density distribution

Annihilation

$$\frac{\mathrm{d}\Phi_{\gamma}^{\mathrm{ann.}}}{\mathrm{d}E_{\gamma}} = \frac{1}{4\pi} \frac{\langle \sigma v \rangle}{2m_{\chi}^2} \times \frac{\mathrm{d}N_{\gamma}}{\mathrm{d}E_{\gamma}} \times \int_{\Delta\Omega} \int_{l.o.s.} \rho_{\mathrm{DM}}^2 \,\mathrm{d}l \,\mathrm{d}\Omega \qquad \qquad \chi \bigvee_{\chi} \int_{\mathrm{SM}} \int_{\mathrm{SM}} \int_{\mathrm{SM}} \frac{\mathrm{d}l}{\mathrm{d}E_{\gamma}} \,\mathrm{d}l \,\mathrm{d}\Omega \qquad \qquad \chi \bigvee_{\chi} \int_{\mathrm{SM}} \int_{\mathrm{SM}} \frac{\mathrm{d}R_{\gamma}}{\mathrm{d}E_{\gamma}} \,\mathrm{d}R_{\gamma} \,\mathrm{$$

$$\frac{\mathrm{d}\Phi^{\,\mathrm{dec.}}}{\mathrm{d}E_{\gamma}} = \frac{1}{4\pi} \frac{1}{\tau_{\mathrm{DM}} m_{\chi}} \times \frac{\mathrm{d}N_{\gamma}}{\mathrm{d}E_{\gamma}} \times \left[\int_{\Delta\Omega} \int_{l.o.s.} \rho_{\mathrm{DM}} \mathrm{d}l \mathrm{d}\Omega \right]$$

$$\chi - \chi - \chi_{SM}$$

Density distribution

What density targets do we need for CTA?

- 1. Bright: close and/or massive DM budget
- Localized ("point-like")
- 3. no astrophysical back-/foregrounds

2. Dark Galactic DM clumps

O

O

Dark clumps annihilation brightness

Brightness in γ-rays (*J*-factor):

Dark clumps annihilation brightness

Dark clumps annihilation profiles

Take advantage of CTA's excellent angular resolution

χ

SM

Dark clumps annihilation profiles

Take advantage of CTA's excellent angular resolution

But how to find the dark clumps?

In a survey:

Observing 25% of the sky with 500 hours (extragalactic survey benchmark):

But how to find the dark clumps?

In a survey:

Observing 25% of the sky with 500 hours (extragalactic survey benchmark):

Cosmic variance

χ

SM

χ

SM

SM

- 1. Number of detectable objects rises linearly with $\Delta \Omega$: *geometry* + *isotropy*
- 2. Number of detectable objects rises with $sqrt(T_{obs})$: instrument background
- 3. Number of detectable objects rises inversely with sensitivity threshold $N_{\text{objects}} (\geq F_{\text{sens}}) \sim 1/F_{\text{sens}}$: subhalo source count distribution

$\Delta \Omega$	$N_{ m FOV}$	$T_{\rm obs}/{ m FOV}$	< o v>	$\overline{N}_{\text{spots}}(\geq 2\sigma)$
π	300	$100 \min$	$10^{-24} { m ~cm^3 s^{-1}}$	1
10-2	1	$100 \min$	$10^{-24} \mathrm{~cm^{3} s^{-1}}$	$3 \cdot 10^{-3}$
10-2	1	1000 min	$10^{-24} \mathrm{~cm^{3} s^{-1}}$	$1 \cdot 10^{-2}$
10-2	1	$100 \min$	$10^{-23} \mathrm{~cm^{3} s^{-1}}$	$3 \cdot 10^{-2}$

See Hütten et al (2016) Ann E for details

3. Galaxy clusters

31.25 Mpc/h

A. P. S.W. See

$(< R_{vir})$	$Log_{10} J_T$	al.	100						
	$(\text{GeV}^2\text{cm}^{-5})$	ψ_{90} (deg)	r_{90}/r_s	J_{01}/J_T	$\mathbf{r}_{01}/\mathbf{r}_s$	ψ_{r_s} (deg)	$\mathbf{J}_{r_s}/\mathbf{J}_T$	Rank_{01}	Rank ₉₀
34.0	17.73	1.22	4.24	0.037	0.14	0.29	0.19	3	5
51.6	17.84	1.41	4.08	0.028	0.29	0.34	0.20	4	4
54.0	17.89	1.38	3.89	0.028	0.28	0.36	0.21	2	3
55.0	19.11	7.29	4.55	0.004	0.06	1.61	0.18	1	1
39.9	18.17	2.97	5.11	0.013	0.17	0.58	0.16	5	2
34.8	17.33	1.36	5.69	0.035	0.42	0.24	0.14	7	7
36.1	17.51	1.59	5.54	0.028	0.35	0.29	0.15	6	6
	34.0 51.6 54.0 55.0 39.9 34.8 36.1	34.0 17.73 51.6 17.84 54.0 17.89 55.0 19.11 39.9 18.17 34.8 17.33 36.1 17.51	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						

Table 8. Same as table 7 but now including substructure. $B(\langle R_{vir})$ is the total boost within the virial radius of the object, as given by eq. (4.2). This table was computed assuming a PSF= 0.1°.

DM-annihilation brightness comparable to satellite galaxies

									110)4.3530	
Cluster	$B(< R_{vir})$	$\begin{array}{c} {\rm Log_{10}~J_{\it T}}\\ {\rm (GeV^2 cm^{-5})} \end{array}$	ψ_{90} (deg)	$\mathbf{r}_{90}/\mathbf{r}_s$	$\mathbf{J}_{01}/\mathbf{J}_T$	r_{01}/r_s	ψ_{r_s} (dog)	J_{r_s}/J_T	Rank_{01}	Rank ₉₀	
Perseus	34.0	17.73	1.22	4.24	0.037	0.14	0.29	0.19	3	5	
Coma	51.6	17.84	1.41	4.08	0.028	0.29	0.34	0.20	4	4	
Ophiuchus	54.0	17.89	1.38	3.89	0.028	0.28	0.36	0.21	2	3	
Virgo	55.0	19.11	7.29	4.55	0.004	0.06	1.61	0.18	1	1	
Fornax	39.9	18.17	2.97	5.11	0.013	0.17	0.58	0.16	5	2	
NGC5813	34.8	17.33	1.36	5.69	0.035	0.42	0.24	0.14	7	7	
NGC5846	36.1	17.51	1.59	5.54	0.028	0.35	0.29	0.15	6	6	

Table 8. Same as table 7 but now including substructure. $B(< R_{vir})$ is the total boost within the virial radius of the object, as given by eq. (4.2). This table was computed assuming a PSF= 0.1°.

- DM-annihilation brightness comparable to satellite galaxies
- Emission profiles more extended (typical half-light radii > 0.5°)

1104 3530

Cluster	$\mathbf{B}(< R_{vir})$	$Log_{10} J_T$	ψ_{90}	$\mathbf{r}_{90}/\mathbf{r}_s$	$\mathbf{J}_{01}/\mathbf{J}_T$	$\mathbf{r}_{01}/\mathbf{r}_s$	ψ_{r_s}	J_{r_s}/J_T	Rank_{01}	Rank ₉₀
		$({\rm GeV^2 cm^{-5}})$	(deg)				(dog)			
Perseus	34.0	17.73	1.22	4.24	0.037	0.14	0.29	0.19	3	5
Coma	51.6	17.84	1.41	4.08	0.028	0.29	0.34	0.20	4	4
Ophiuchus	54.0	17.89	1.38	3.89	0.028	0.28	0.36	0.21	2	3
Virgo	55.0	19.11	7.29	4.55	0.004	0.06	1.61	0.18	1	1
Fornax	39.9	18.17	2.97	5.11	0.013	0.17	0.58	0.16	5	2
NGC5813	34.8	17.33	1.36	5.69	0.035	0.42	0.24	0.14	7	7
NGC5846	36.1	17.51	1.59	5.54	0.028	0.35	0.29	0.15	6	6

Table 8. Same as table 7 but now including substructure. $B(\langle R_{vir})$ is the total boost within the virial radius of the object, as given by eq. (4.2). This table was computed assuming a PSF= 0.1°.

- > DM-annihilation brightness comparable to satellite galaxies
- Emission profiles more extended (typical half-light radii > 0.5°)
- Astrophysical backgrounds:
 - γ-ray emitting galaxies (AGN, star-forming galaxies, CR interaction)
 - Also expect diffuse emission from the inter-cluster medium (ICM)

DM annihilation profile of the Perseus cluster

DM annihilation profile of the Perseus cluster

DM decay profile of the Perseus cluster

Cosmic-ray induced emission in the inter-cluster medium

Spatial profile

Spectral profile

CTA's excellent angular resolution and energy range:

disentangle the signals

DM substructure extends annihilation profile

The CTA galaxy cluster working group (wg-phys-clusters)

- > CTA galaxy cluster key science project: 300 hours allocated for CTA North
- Coordination:
 - Moritz Hütten (MPP Munich)
 - Judit Pérez-Romero, Miguel Sánchez-Conde (UAM Madrid)

The team:

R. Alfaro, G. Brunetti, S. Colafrancesco, C. Delgado, M. Doro, E. Fedorova, E. de Gouveia Dal Pino, S. Hernandez Cadena, M. Hütten, M. Lallena, S. Nuza, J. Pérez, O. Reimer, M. Sánchez-Conde, S. Zimmer

Updated performance study on galaxy clusters in progress

- Hierarchical DM clustering:
 γ-ray clumps from annihilation/decay at various scales and distances
- Search for the smallest clumps in a TeV γ-ray survey with CTA (extragalactic key science project by-catch)
- > Watch out for unidentified sources in the FOV: may be a Galactic DM clump
- Study the closest galaxy clusters: Perseus and Coma: Excellent observation conditions with CTA North
- Clusters: Constrain DM particle life times beyond $\tau_{\rm DM} > 10^{27} {
 m s} = 2 \cdot 10^9 \ t_{\rm Universe}$

CTA excellent probe for TeV dark matter particle physics in various complementary targets

BACK UP

Perseus cluster also optimal target for DM decay

•	✓ SM
X -	- ()
	M
	+ 3141

TABLE I: Ten brightest galaxy clusters (positions taken from the MCXC meta-catalogue 15) in DM-decay for $\alpha_{int} = 0.1^{\circ}$. $D(0.1^{\circ})$ Name Index b d α_{s} (MCXC) (deg) $(M_{\odot} \text{ kpc}^{-2})$ (deg) (deg) (Mpc) $1.0 \cdot 10^{4}$ 0.44 Perseus = A426258150.6 -13.3 75.0 $1.0 \cdot 10^{4}$ 884 283.8 74.4 15.4 1.09 Virgo $7.3 \cdot 10^{3}$ 88.0 96.2 0.29 Coma 943 57.2Ophiuchus 1304 9.3 0.27 $7.3 \cdot 10^{3}$ 0.6 116. A3526 302.4 21.6 48.1 0.39 $6.8 \cdot 10^{3}$ 915 $6.5 \cdot 10^{3}$ A3627 1231 325.3 -7.1 66.0 0.32 $5.7 \cdot 10^{3}$ AWM7 224 146.3 -15.6 72.1 0.28 A1367 792 235.1 73.0 89.3 0.24 $5.4 \cdot 10^{3}$ $5.4 \cdot 10^{3}$ A3571 1048 316.3 28.6 160. 0.18 $5.1 \cdot 10^{3}$ A2199 124962.9 43.7 124. 0.20

1203.1164

Perseus region already extensively studied by MAGIC telescopes:

0909.3267, 1009.2155, 1111.5544, 1310.8500, 1602.03099,

1806.11063: $\tau_{\rm DM} \ge 10^{27} { m s}$

m_{DM} [GeV]

Astrophysical merits of Perseus cluster observations

Brightest Galactic DM clumps: Properties

Average mass and distance (from 10⁴ runs):

				optin	lict.
	<i>Fermi</i> -LA	T scenario	CTA so		
Median properties of	$(f_{sky} =$	82.6%)	$(f_{sky} =$		
brightest subhalo within	$\theta_{\rm int} = 0.1^{\circ}$	$\theta_{\rm int} = 0.8^\circ$	$\theta_{\rm int} = 0.05^{\circ}$	$\theta_{\rm int} = 0.1^\circ$	
$\widetilde{D}_{\mathrm obs}^{\star} \; [\mathrm{kpc}]$	7^{+10}_{-5}	8^{+11}_{-6}	7^{+10}_{-5}	8^{+12}_{-6}	
$\log_{10}(\widetilde{m}_{\mathrm vir}^{\star}/\mathrm{M}_{\odot})$	$7.7^{+1.3}_{-1.5}$	$8.1^{+1.2}_{-1.6}$	$7.4^{+1.4}_{-1.4}$	$7.6^{+1.4}_{-1.5}$	
$\log_{10} \left(\widetilde{J}^{\star} / \text{GeV}^2 \text{cm}^{-5} \right)$	$20.3_{-0.3}^{+0.4}$	$20.7_{-0.3}^{+0.4}$	$19.7_{-0.3}^{+0.3}$	$19.9_{-0.3}^{+0.4}$	
L				conser	Vati
		Taconaria			Vativ

	<i>Fermi</i> -LA	T scenario	CTA so	valive	
Median properties of	$(f_{sky} =$	82.6%)	$(f_{sky} =$	(25%)	
brightest subhalo within	$\theta_{\rm int} = 0.1^{\circ}$	$\theta_{\rm int} = 0.8^{\circ}$	$\theta_{\rm int} = 0.05^{\circ}$	$\theta_{\rm int} = 0.1^{\circ}$	
$\widetilde{D}_{\mathrm obs}^{\star} \; [\mathrm{kpc}]$	32^{+42}_{-23}	30^{+42}_{-22}	20^{+27}_{-15}	19^{+26}_{-14}	
$\log_{10}(\widetilde{m}_{\mathrm vir}^{\star}/\mathrm{M}_{\odot})$	$8.7^{+0.9}_{-1.3}$	$8.6^{+0.9}_{-1.3}$	$8.7^{+0.8}_{-1.4}$	$8.7^{+0.9}_{-1.4}$	
$\log_{10}\left(\widetilde{J}^{\star}/\text{GeV}^2\text{cm}^{-5}\right)$	$18.9^{+0.3}_{-0.2}$	$19.1_{-0.3}^{+0.3}$	$19.4_{-0.3}^{+0.3}$	$19.8_{-0.3}^{+0.4}$	

Dark clumps decay brightness

