Axion-Like Particles (and dark matter) in terms of CTA

Kazunori Kohri

Cosmophysics Group, IPNS, KEK, Sokendai (and Oxford)

18/10/18

Kaz Kohri (KEK)

Kaz Kohri (KEK)

What is (QCD) axion?

- Breakdown of U(1) Peccei-Quinn symmetry
- The Nambu-Goldstone boson (angular component) is called "axion"

How large is
$$F_a$$
? $\mathcal{L}_{int} \sim \mathcal{H}_{F_a} \mathcal{H}_{F_a}$
See also, $m_a \sim \frac{m_{\pi} F_{\pi}}{F_a}$ in QCD axions (not string axions)

• Dark matter axion ($\Omega_a h^2 \leq 0.1$)

 $F_a \leq 10^{12} GeV \iff 10^{-6} eV \leq m_a$

• In order not to cool red giants and/or SN1987A,

 $10^{10} \text{GeV} \leq F_a \iff m_a \leq 10^{-4} \text{eV}$

18/10/18

Kaz Kohri (KEK)

Photon-ALPs mixing in (string) axion

• Lagrangian

$$L = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{1}{2}\partial_{\mu}a\partial^{\mu}a - \frac{1}{2}m_{a}^{2}a^{2}\left[-\frac{1}{4}g_{a\gamma}aF_{\mu\nu}\tilde{F}^{\mu\nu}\right]$$
$$= g_{a\nu}a\,\vec{E}\bullet\vec{B}$$

Mass matrix

$$M^{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -g_{\alpha\gamma}B\omega \\ 0 & -g_{\alpha\gamma}B\omega & m_{\alpha}^{2} \\ A & A & A \\ A & A & A \\ A & A & A \\ Kaz Kohri (KEK) \end{pmatrix} A_{\perp}$$

18/10/18

Oscillation probability

• Probability

18/10/

• For efficient oscillation,

$$E_{\gamma} > E_{*} = \frac{m_{a}^{2}}{2g_{a\gamma}B} \text{ and } r \ge r_{Ha} \equiv \frac{2}{g_{a\gamma}B} g_{a\gamma}B$$

Phase of oscillation ($r > 2/g_{ay}B$)

$$g_{11} \equiv g_{a\gamma} / 10^{-11} \text{GeV}^{-1}, B_{10\mu G} \equiv B / 10\mu G, r_{10\text{kpc}} \equiv r / 10\text{kpc}$$

• Phase (like Hillas Condition)

$$\frac{g_{a\gamma}Br}{2} \sim g_{11}B_{10\mu G}r_{10\rm kpc} > 1$$

Oscillation length

$$r_{ha} \sim \frac{10 \text{kpc}}{g_{11}B_{10\mu\text{G}}} \sim \frac{10^3 \text{Mpc}}{g_{11}B_{n\text{G}}} \sim \frac{10^{-1} \text{pc}}{g_{11}B_{10\text{G}}}$$

at within the MW Galaxy at Inter Galactic Space within a jet in AGN

Energy range for oscillation (E>E_{*}) $E_{\gamma} > E_{*} = m_a^2/(2g_{a\gamma}B)$

at within the MW Galaxy

at Inter Galactic Space within jets in AGN

 $g_{11} \equiv g_{a\gamma} / 10^{-11} \text{GeV}^{-1}, B_{10\mu G} \equiv B / 10\mu G, r_{10\text{kpc}} \equiv r / 10\text{kpc}$

Gamma-ray accessible parameters

Hillas Diagram

Three Coincidences within an AGN jet

Three sites should have coincided for

- 1. Accelerations of proton
- 2. Photon production through $p-\gamma$
- 3. Axion-photon conversions

It is remarkable that we have not assumed anything about structures of magnetic field at the source

Cosmic Infrared Background (CIB) by CIBER 2017, IRTS 2013, Akari 2013

Gamma-ray horizon through $\gamma_{CR} + \gamma_{BG} \rightarrow e^+ + e^-$

Kohri and Kodama, arXiv:2017.05189

Spectrum reduction by axion mixing

Shimet, Hooper, Serpico (08)

We need axion

FIG. 3: Gamma-ray spectrum fitted to the data of H2356 309 (the redshift is z = 0.165 which gives the distance ~ 610 Mpc). Here, we adopted $g_{a\gamma} = 3.2 \times 10^{-11} \text{GeV}^{-1}$ and $m_a = 3.2 \times 10^{-9}$ eV. The reduced χ^2 is estimated to be $\chi^2/\text{d.o.f} = 1.1$, which is improved from the case without axion $\chi^2/\text{d.o.f} = 2.2$. The fitted value of the photon index is $\Gamma_s = 2.3$. We followed

FIG. 4: Sames as Fig. 3, but for 1ES1101 232 (the redshift is z = 0.186 which gives the distance ~ 680 Mpc.). The reduced χ^2 is estimated to be $\chi^2/d.o.f = 0.69$, which is improved from the case without axion $\chi^2/d.o.f = 2.0$. The fitted value of the photon index is $\Gamma_s = 1.9$.

Kohri and Kodama, arXiv:2017.05189

An axion solution

Constraints on ALP-photon coupling by Xray observations (Fermi/LAT and MAGIC) of NGC 1275 embedded in Perseus cluster

Summary

• Photon can travel beyond its horizon of electron-positron production through the mixing between photon and axion

 Future observation such as CTA (TeV) will reveal the nature of (string) axions by observing an excess from the standard prediction