CTA Extragalactic Survey Discovery Potential and the Impact of Axion-Like Particles and Secondary Gamma Rays

Andrea De Franco (Oxford -> EBG MedAustron GmbH) <u>Yoshiyuki Inoue</u> (ISAS/JAXA), Miguel A. Sánchez-Conde (OKC), Garret Cotter (Oxford)

CTA-Japan Meeting @ Kashiwa, 2016-12-15

Current View of VHE Gamma-Ray Sky

- ~200 very high energy (VHE; >50 GeV) blazars by Fermi/LAT (see the 2FHL catalog)
- ~70 VHE blazars by imaging atmospheric Cherenkov telescopes (IACTs; see TeVCat)

VHE Extragalactic Sky Survey by CTA

- Future survey will enable us to study
 - High energy phenomena around SMBHs
 - Cosmological evolution of blazars
- We have investigated the expected source counts (YI, Totani, & Mori '10; Dubus, YI+'13; YI,

Kalashev, Kusenko+'14).

A New Blazar Luminosity Function

• Utilizing the latest 403 Fermi/LAT blazar samples, a new blazar luminosity function is constructed (Ajello, MASC, YI,+'15).

Axion-Like Particles & Secondary y-rays

- Axion-Like Particles (ALPs) modify the gamma-ray attenuation effect (e.g. De Angelis+07; Sánchez-Conde+09; Horns+12).
- Secondary gamma rays from cosmic rays along line of sight (e.g. Essey & Kusenko '10, Essey+'10, Essey+'11, Murase+'12, Takami+'13).

Cumulative Source Count Distribution

200 hrs Blind Surveys

CTA-South/North - 0.5 hr				
	$>30~{\rm GeV}$	$>300 { m GeV}$	>2 TeV	$>10 { m TeV}$
EBL	35/13	32/15	$10^{*}/4$	-/-
ALP (B= 10^{-10} G)	19/7	25/12	$8^{*}/4$	-/-
ALP (B= 10^{-11} G)	24/9	30/14	$10^{*}/4$	-/-
Secondary (B= 10^{-15} G)	47/18	36/16	$12^{*}/5$	1*/-
Secondary (B= 10^{-17} G)	76/32	45/20	$14^{*}/6$	1*/-

De Franco+'17

- FoV of 5°, 7°, 9° at >30 GeV, >300 GeV, >2 TeV
 - FoV of 7° at > 2 TeV for CTA-North (no SSTs)
- ALPs reduce # of blazars at >30 GeV.
- 2x more blazars with the secondary scenario.

Cumulative Redshift Distribution

- z~2 blazars will be detected.
- Secondary gamma rays will enable us to detect z~0.4 objects even at >2 TeV (see also YI, Kalashev, & Kusenko '14).

Source Count Distribution

- With current IACTs' data
- different from a uniform distribution.
- More uniform and wide sky coverage is required.

Lower Bound on the Cosmic Gamma-ray Background 10⁻⁶ Total CGB (Fermi) Resolved CGB (Fermi) **2FHL Source Fluxes** 10^{-7} E² dN/dE [GeV²/cm²/s/sr/GeV] **TeV Source Fluxes** Mrk 421 10⁻⁸ Mrk 501 10⁻⁹ 10⁻¹⁰ 10⁻¹¹ 10⁻¹² 10² 10⁰ 10³ 10⁴ 10^{1} 10⁵ Photon Energy [GeV] YI & Tanaka '16

- TeV source counts give lower limit on to the cosmic gamma-ray background.
- Fermi has resolved more portion of the TeV sky than IACTs do.
 - CTA & HAWC surveys will be important in order to check this.

Bounds on the Cosmic TeV Gamma-ray Background

- Current limit at 0.1-10 TeV is
 - $3x10^{-8} (E/0.1 \text{ TeV})^{-0.8} \exp(-E/2 \text{ TeV}) < E^2 dN/dE < 1x10^{-7} (E/0.1 \text{ TeV})^{-0.5} [GeV/cm^2/s/sr]$

Redshift distribution of gamma-ray fluxes

• at high energies, samples are not enough.

Summary

- We revisit prospect for future CTA extragalactic survey taking into account 1): the latest blazar luminosity function, 2): axionlike particles, and 3): secondary gamma rays.
 - the source density will be 5x10⁻² deg⁻² at >30 GeV with 50 hr obs/FoV.
- 7-76 blazars will be detected at >30 GeV with two (North & South) 200 hr blind surveys (-> *less than a year*).
- ALPs would reduce # of blazars at >30 GeV.
- Secondary gamma rays will allow us to see out to $z\sim1$ at >2 TeV.

Spectral Model in Ajello+'15

Blazar SED template

$$\frac{dN_{\gamma}}{dE}(E,\Gamma,z) \propto \left[\left(\frac{E}{E_b}\right)^{1.7} + \left(\frac{E}{E_b}\right)^{2.6} \right]^{-1} e^{-\tau(E,z)}$$

• Break energy Eb

$$\log E_b(\text{GeV}) = 9.25 - 4.11\Gamma$$

Spectral Modeling

- We use an average blazar SED template in Ajello, MASC, YI+'15 and the YI+'13 EBL attenuation model.
- For ALPs, we use the model by MASC+'09 with $B = 10^{-11}$ and 10^{-10} G.
- For secondary gamma rays, we use the model by Kalashev+'12 with $B = 10^{-17}$ and 10^{-15} G

How large fraction of the VHE sky resolved by Fermi?

- Fermi has resolved 50-80% of the VHE sky (0.1-1 TeV).
- CTA survey (at >50 GeV) will not drastically change the source counts.

Why Fermi has resolved the sky more even at ~1 TeV?

- 14 sources at the highest energy (585-2000 GeV) bin in the 2FHL samples, while 30 sources at >585 GeV in our sample. \Rightarrow Sky coverage is not the cause.
- The dominant object Mrk 421 is variable.
 - The CGB is the time-averaged spectrum. e.g. Fermi accumulated data 80 months for 2FHL.
 - We need long-term monitoring of TeV sources. \Rightarrow HAWC & current IACTs in the CTA era.