

So far, 77 X-ray binary BHs and BHCs have found in MW & LMC.

BlackCAT (Corral-Santana + '16, AA 587, A61) WATCHDOG (Tetarenko + '16, ApJS 222, 15)

So far, 77 X-ray binary BHs and BHCs have found in MW & LMC.

BlackCAT (Corral-Santana + '16, AA 587, A61) WATCHDOG (Tetarenko + '16, ApJS 222, 15)

In these BH X-ray binaries, material transfers from a companion star onto the BH primary.

- HMXBs 6 are fed by wind, 1 by Roche-lobe overflow Companion: O-B stars $(M>10M_{\odot})$
- **LMXBs** 45 are fed by Roche-lobe overflow. Companion: K-M (M<M_o) or B-F (M \sim M_o)

(Companion nature of other 26 BHXBs are unknown.)

The mass <u>accretion rate</u> \dot{M} near the compact object determines their emission properties.

6 BH-HMXBs and 4 BH-LMXBs have $\dot{M} > 10^{-8} M_{\odot} yr^{-1}$, showing persistent X-ray emission with $L_X \sim L_{Edd}$. Tanaka & Shibazaki 1996, ARA&A 34, 607

47 BH-LMXBs have much lower long-term accretion rate, $\dot{M} < 10^{-9} M_{\odot} \text{yr}^{-1}$, showing transient X-ray emission: Sporadic outbursts after long-time quiescence.

Tanaka & Lewin 1995, in X-ray binaries, p. 126

Outburst recurrence period ranges 10⁰⁻² yrs. WATCHDOT, BlackCAT

For transient BH binaries, HE & VHE emissions are expected in the shock-in-jet model.

Marscher & Gear 1985, ApJ 298, 114

HE/VHE flux increases w/ increasing \dot{M} .

However, HE/VHE emissions are also predicted to be emitted in the BH-gap model from transient BHBs. KH & Pu 2016, ApJ 818, 50; KH + 2016, ApJ in press

HE/VHE flux increases w/ decreasing \dot{M} .

Today, we will focus on the BH-gap model and discuss its theoretical predictions.

A quick review of the BH gap model:

Beskin et al. (1992, Sov. Astron., 36, 642) first proposed the BH gap model, extending the pulsar gap model (Cheng + 1986, ApJ 300, 500).

K.H. & Okamoto (1998, ApJ 497, 563) then showed that sufficient plasmas can be supplied via γ - γ pair production around super-massive BHs.

However, predicted γ -ray fluxes were undetectable, because they assumed high accretion rates (as in QSOs), which leads to a very thin gap width ($w \ll r_g$) along **B** lines, where $r_g = GMc^{-2}$.

A quick review of the BH gap model:

Thus, Neronov & Aharonian (2007, ApJ 671, 85) and Levinson & Rieger (2011, ApJ 730, 123) revisited the BH gap model, adopting much thicker gap width ($w \sim r_g$) and examined M87* and Sgr A*.

Then Broderick & Tchekhovskoy (2015, ApJ 809, 97) showed that two-stream instability does not grow in BH gaps.

Subsequently, KH & Pu (2016, ApJ 818, 50) showed that SMBHs can emit detectable gap emission in VHE if located within a few tens of Mpc.

Due to frame dragging, the GR Goldreich-Julian charge density, ρ_{GJ} , vanishes near the $\Omega = \omega$ surface (and hence in the direct vicinity of the horizon).

Around this null surface ($\rho_{GI}=0$), a stationary vacuum gap (i.e., e^{\pm} accelerator) arises.

Fig. Side view of a BH gap. Copious HE/VHE emissions are emitted from the green shaded region.

§ 2 Method

Since the null surface appears near the horizon, the same method as the pulsar outer-gap model can be applied to the BH-gap model.

§ 2 Method: Basic equations Beskin + (1992)

Poisson eq. From $\nabla \cdot E = 4\pi \rho$, we obtain

$$\nabla \bullet E_{\parallel} = 4\pi (\rho - \rho_{\rm GJ}),$$

where

$$\rho_{\rm GJ} \equiv -\frac{1}{4\pi} \nabla \cdot \left(\frac{\Omega_{\rm F} - \omega}{2\pi\alpha c} \nabla \Psi \right), \ \alpha \to 0 \ \text{@ horizon}$$
$$\alpha \to 1 \ \text{@ infinity}$$

 $\mathbf{B}_{p} = -\frac{e_{\phi} \times \nabla \Psi}{2\pi \varpi}, \quad \boldsymbol{\varpi}: \text{ distance from rotation axis.}$

If $\rho \neq \rho_{GJ}$ in any region, $E_{\parallel} \neq 0$ arises around it.

 $\rho_{GJ}=0$ near $\omega=\Omega_{F}$. Thus, pulsar-like 'null charge surface' appears near the horizon. A vacuum gap can arise there.

§ 2 Method: Basic equations

KH+ ('06, ApJ in press)

E_{\parallel} is solved from the **Poisson eq.**

Near the horizon ($\Delta \equiv r^2 - 2Mr + a^2 \ll M^2$), it becomes

$$-\left(\frac{r^{2}+a^{2}}{\Delta}\right)^{2}\frac{\partial^{2}\Phi}{\partial r_{*}^{2}} + \frac{2(r-r_{g})(r^{2}+a^{2})}{\Delta^{2}}\frac{\partial\Phi}{\partial r_{*}}$$
$$-\frac{\Sigma}{\Delta\sin\theta}\frac{\partial}{\partial\theta}\left(\frac{\sin\theta}{\Sigma}\frac{\partial\Phi}{\partial\theta}\right) = \left(\frac{\Sigma}{r^{2}+a^{2}}\right)^{2}(n_{+}-n_{-}-n_{GJ})$$
where $E_{\parallel} \equiv -(\mathbf{B}\cdot\nabla)\Phi / B$ and $\Sigma \equiv r^{2}+a^{2}\cos^{2}\theta$.

The tortoise coordinate r_* is related to the polar r by

$$\frac{dr_*}{dr} = \frac{r^2 + a^2}{\Delta}$$

§ 2 Method: Basic equations

The tortoise coordinate r_* is related to the polar r by

$$\frac{dr_*}{dr} = \frac{r^2 + a^2}{\Delta}$$

§ 2 Method: Basic eqs.

Poisson eq.:

$$-\left(\frac{r^{2}+a^{2}}{\Delta}\right)^{2}\frac{\partial^{2}\Phi}{\partial r_{*}^{2}} + \frac{2(r-r_{g})(r^{2}+a^{2})}{\Delta^{2}}\frac{\partial\Phi}{\partial r_{*}}$$

$$-\frac{\Sigma}{\Delta\sin\theta}\frac{\partial}{\partial\theta}\left(\frac{\sin\theta}{\Sigma}\frac{\partial\Phi}{\partial\theta}\right) = \left(\frac{\Sigma}{r^{2}+a^{2}}\right)^{2}(n_{+}-n_{-}-n_{GJ})$$

Instead of solving the e^{\pm} Boltzmann eqs., we assume that the Lorentz factors are saturated by curvature- or IC-drag forces and put $\gamma = \min(\gamma_{curv}, \gamma_{ICS})$. Solve $n_{+} \& n_{-}$ from the pair production, which is solved from the γ -ray specific intensity, I_{v} at each point.

Radiative transfer eq.:
$$\frac{dI_v}{dl} = -\alpha_v I_v + j_v$$

§ 3 Results: the case of stellar-mass BHs

Consider a stellar-mass BH, $M=10M_{\odot}$, assuming $B=B_{eq}$.

Magnetic-field-aligned electric field, E_{\parallel} (statvolt cm⁻¹)

KH+ ('06, ApJ in press)

 $M=10M_{\odot}, B=B_{eq}.$

Slice $E_{\parallel}(r_*,\theta)$ at six θ 's.

KH+ ('06, ApJ in press)

 $M=10M_{\odot}, B=B_{eq}$; Lepton densities per **B** flux @ $\theta=0^{\circ}$

 $M=10M_{\odot}, B=B_{eq}; E_{\parallel}(r-r_0,\theta) @ \theta=0^{\circ}$

 $M=10M_{\odot}, B=B_{eq}$; outer & inner boundaries @ $\theta=0^{\circ}$ Gap width increases with decreasing accretion rate.

KH+ ('06, ApJ in press)

$M=10M_{\odot}, B=B_{eq};$ SEDs @ five discrete \dot{m} ($\theta=0^{\circ}$)

 $M=10M_{\odot}, B=B_{eq}; \text{ SEDs } @ \text{ five discrete } \dot{m} (\theta=0^{\circ})$

$M=10M_{\odot}, B=B_{eq}$; Emission components ($\theta=0^{\circ}$)

§ 4 Detectability of BH transients

We can approximately estimate L_{gap} by the Blandford-Znajek flux, $F_{BZ} = L_{BZ}/4 \pi d^2$ at Earth.

Four greatest F_{BZ} BHTs (descending order):

Name	mass	distance	obs. <i>M</i>	Com	ments*
	M_{\odot}	kpc	$\dot{M}_{ m Edd}$		
1A 0620-00	6.60	1.06	2.08×10^{-3}	L, T,	V616 Mon
4U 1956+350	14.81	1.86		H, P ,	Cyg X-1
XTE J1118+480	7.30	1.72	4.96×10^{-4}	L, T,	KV UMa
GS 2023+338	7.15	2.39	.017224	L, T,	V404 Cyg

* Low-mass/High-mass companion, Transient/Persistent

We exclude Cyg X-1, because $M \gg 10^{-4} M_{Edd}$.

§ 4 Detectability of BH transients

Although the observed \dot{M} exceeds 10⁻⁴ for all the 3 BHTs, there may be a certain fraction of time in which $5.7 \times 10^{-5} < \dot{M} / \dot{M}_{Edd} < 10^{-4}$ is satisfied.

Name	mass	distance	obs. M	Comments*
	M_{\odot}	kpc	$\dot{M}_{ m Edd}$	
1A 0620-00	6.60	1.06	2.08×10^{-3}	L, T, V616 Mon
4U 1956+350	14.81	1.86		H, P, Cyg X-1
XTE J1118+480	7.30	1.72	4.96×10 ⁻⁴	L, T, KV UMa
GS 2023+338	7.15	2.39	.017224	L, T, V404 Cyg

* Low-mass/High-mass companion, Transient/Persistent

We thus examine these three BH LMXBs w/ greatest $F_{\rm BZ}$.

§ 4 Detectability of BH transients J0620-0020: LAT 7-yr averaged flux appears below the theoretical prediction.

§ 4 Detectability of BH transients J1118+4802: LAT 7-yr averaged flux also appears below prediction.

§ 4 Detectability of BH transients V404 Cyg: LAT 7-yr averaged flux appear slightly below prediction.

Summary on BH gap model

BH gap emits copious HE/VHE γ -rays, if mass accretion resides rate is $10^{-4} > M / M_{Edd} > 5.7 \times 10^{-5}$ near the horizon. For stellar-mass BHs, e^{\pm} 's are accelerated in the gap and saturate @ $\gamma \sim 10^7$ by curvature-radiation drag forces. For stellar-mass BHs, curvature photons appear at ~GeV and are detectable w/ *Fermi*/LAT, and IC photons appear at 3-30 TeV and are detectable w/ CTA, both during quiescent. We can discriminate gap vs. jet emissions by anticorrelation vs. correlations at IR/opt & HE/VHE. Thus, we propose to observe BHTs, J0620-0020, GRO J1655-40, V404 Cyg, J1118+4802, at IR/opt & VHE simultaneously. The same method can be applied to arbitrary BH masses, e.g., IMBHs and SMBHs.