Time Domain Astronomy with the SKA

SQUARE KILOMETRE ARRAY

Exploring the Universe with the world's largest radio telescope

Takahiro AOKI (Yamaguchi Univ.) 2016-12-16, CTA-Japan Workshop

SKA-Japan

Exploring the Universe with the world's largest radio telescope

From Akahori's slide @ several workshops

Radio Telescopes I've Operated

Yamaguchi 32 & 34 m

Nasu 20 m x 8 & 30 m

1. Introducing the SKA project

2. SKA Transient Science

3. Japanese possible contribution to the SKA

Square Kilometre Array (SKA)

SKA Antennas @ IAU Hawaii

SKA-MID (~GHz)

エジブ

アルシェリア

マリ

モーリタニア

リビア

SKA-MID (~GHz)

Design

Sensitivity

SKA-LOW (~MHz)

Log-periodic dipole antenna

SKA-LOW (~MHz)

SKA-LOW (~MHz)

Design

Sensitivity

Dirty Image Quality Comparison

per VLA track (eg. SKA1-Mid vs. VLA A-config.)

Exploring the Universe with the world's largest radio telescope From Braun's slide @ skaengcon16

Exploring the Universe with the world's largest radio telescope From Braun's slide (a) skaengcon16

Dirty Image Quality Comparison

Single SKA1-Low track compared to LOFAR-INTL

Exploring the Universe with the world's largest radio telescope From Braun's slide @ skaengcon16

Dirty Image Quality Comparison

Exploring the Universe with the world's largest radio telescope From Braun's slide (a) skaengcon16

Performance Comparison

Parameters for Comparable Telescopes														
		eMERLIN	JVLA	GBT	GMRT	Parkes MB	LOFAR	FAST	MeerKAT	WSRT	Arecibo	ASKAP	SKA1-low	SKA-mid
A _{eff} /T _{sys}	m²/K	60	265	276	250	100	61	1250	321	124	1150	65	559	1560
FoV	deg ²	0.25	0.25	0.015	0.13	0.65	14	0.0017	0.86	0.25	0.003	30	20.77	0.49
Receptor Size	m	25	25	101	45	64	39	300	13.5	25	225	12	35	15
Fiducial frequency	GHz	1.4	1.4	1.4	1.4	1.4	0.12	1.4	1.4	1.4	1.4	1.4	0.11	1.67
Survey Speed FoM	$deg^2 m^4 K^{-2}$	9.00×10 ²	1.76×10 ⁴	1.14×10 ³	8.13×10 ³	6.50×10 ³	5.21×10 ⁴	2.66×10 ³	8.86×10 ⁴	3.84×10 ³	3.97×10 ³	1.27×10 ⁵	6.49×10 ⁶	1.19×10 ⁶
Resolution	arcsec	10-150 x 10 ⁻³	1.4 - 44	420	2	660	5	88	11	16	192	7	7	0.25
Baseline or Size	km	217	1 - 35	0.1	27	0.064	100	0.5	4	2.7	225	6	80	150
Frequency Range	GHz	1.3-1.8, 4-8, 22- 24	1 - 50	0.2 - 50+	0.15, 0.23, 0.33, 0.61, 1.4	0.44 to 24	0.03 - 0.22	0.1 - 3	0.7 - 2.5, 0.7 - 10	0.3 - 8.6	0.3 - 10	0.7-1.8	0.050 - 0.350	0.35-14
Bandwidth	MHz	400	1000	400	450	400	4	800	1000	160	1000	300	300	770
Cont. Sensitivity	µJy-hr ^{-1/2}	27.11	3.88	5.89	6.13	16.26	266.61	0.92	3.20	20.74	0.89	28.89	3.36	0.75
Sensitivity, 100 kHz	µJy-hr ^{-1/2}	1714	388	373	411	1029	1686	82	320	830	89	1582	184	66
SEFD	Jy	46.0	10.4	10.0	11.0	27.6	45.2	2.2	8.6	22.3	2.4	42.5	4.9	1.8

Table 1: A table of typical performance measures for a variety of radio telescopes (extant and under construction).

SKA (Resulting) Concept: High Sensitivity & Wide Field of View

- > Consisting of many small antennas
- > World's highest sensitivity
- > World's highest survey speed
 - » Time Domain *Radio* Astronomy available!
 - » Transient science effective

(& Wide Band in SKA₂?)

Project Roadmap

Exploring the Universe with the world's largest radio telescope

McPherson's slide @ skaengcon16

SKA Science Book

A D V A N C I N G A S T R O P H Y S I C S with the SQUARE KILOMETRE ARBAY

VOLUME 1

ADVANCING ASTROPHYSICS with the SKA

VOLUME 2

SKA ORGANISATION

Transient Science in the Book

- 1. The Transient Universe with the Square Kilometre Array
- 2. The SKA View of Gamma-Ray Bursts
- 3. Incoherent transient radio emission from stellar-mass compact objects in the SKA era
- 4. SKA as a powerful hunter of jetted **Tidal Disruption** Events
- 5. Fast Transients at Cosmological Distances with the SKA
- 6. The SKA contribution to **GRB cosmology**
- 7. Time domain studies of Active Galactic Nuclei with the Square Kilometre Array
- 8. Core-collapse and Type Ia **supernovae** with the SKA
- 9. Thermal radio emission from **novae & symbiotics** with the Square Kilometre Array
- 10. Investigations of supernovae and **supernova remnants** in the era of SKA
- 11. The SKA and the Unknown Unknowns
- 12. Early Phase Detection and Coverage of Extragalactic and Galactic **Black Hole X-ray Transients** with SKA

19

FRB

Exploring the Universe with the world's largest radio telescope

From System Baseline Design 2.0

Transients/Variables

Transients

Variables

Observational Classification

	Short duration (< 1 s)	Long duration (> 1 s)						
	Fast Radio Bursts (FRBs)	Supernovae, AGN,						
Extra- galactic	FRB							
Galactic	Pulsars	Flare stars, X-ray binaries,						

Time-series observation

Imaging observation

Exploring the Universe with the world's largest radio telescope

Phase Space

Phase Space

GAMMA-RAY BURSTS

Gamma-ray Bursts

NS-NS/BH merger? (Short-duration GRB)

Collapse of a massive star? (Long-duration GRB)

GRB 130427A From Visible Light to Gamma Rays 10,000 **Optical** flash peak brightnes (mag. 7.0) 100 Swift UVOT Swift XRT Swift BAT milliJansky: Brightness density, in milliJar ind-based Fermi GBM flux After days 0.01 LAT data show at 100 times actual flux 0.0001 0 100 1,000 10.000 10^s 106 Seconds I week I month I day Time since Fermi GBM trigger

GRB Afterglow: Issues in Radio

Low Detection Rate

- GRB follow-up results
 - > X-ray: 93% detected
 - > Optical: 75% detected
 - > Radio: 30% detected

Orphan Afterglows Undiscovered

Orphan/off-axis GRBA (99% of population): **Undiscovered in radio**

On-axis GRB: 1% of the all GRBs

- Radio detection: 30% of on-axis GRBs
- Radio detection: 0.3% of population
- Need for the high sensitive
 SKA-MID

GRB Afterglow: Why Radio?

- Revealing Blast Wave Kinetic Energy
 - Bright in radio at the spherical outflow phase
 - > Energy estimation easy!

- Revealing Jet Particles & Magnetism
 - > Reverse shock observation
 - Need for immediate follow-ups
 within several hours

Exploring the Universe with the world's largest radio telescope

GRB Afterglow: Why SKA?

GRB Afterglow: Why SKA?

- Almost all the GHz afterglows detectable using SKA-MID
- However, MHz afterglows undetectable using SKA-LOW...

Orphan GRBA Surveys

Orphan GRBA Surveys

SKA is a *powerful hunter* of these sources!

Unknown Transients

Fast Radio Bursts

1 ms duration, 1 Jy intensity

Long Duration Transients

Minutes duration

Exploring the Oliverse Ofthth2 0007s (Pgest 605telescope

Performance Comparison

Parameters for Comparable Telescopes														
		eMERLIN	JVLA	GBT	GMRT	Parkes MB	LOFAR	FAST	MeerKAT	WSRT	Arecibo	ASKAP	SKA1-low	SKA-mid
A _{eff} /T _{sys}	m²/K	60	265	276	250	100	61	1250	321	124	1150	65	559	1560
FoV	deg ²	0.25	0.25	0.015	0.13	0.65	14	0.0017	0.86	0.25	0.003	30	20.77	0.49
Receptor Size	m	25	25	101	45	64	39	300	13.5	25	225	12	35	15
Fiducial frequency	GHz	1.4	1.4	1.4	1.4	1.4	0.12	1.4	1.4	1.4	1.4	1.4	0.11	1.67
Survey Speed FoM	$deg^2 m^4 K^{-2}$	9.00×10 ²	1.76×10 ⁴	1.14×10 ³	8.13×10 ³	6.50×10 ³	5.21×10 ⁴	2.66×10 ³	8.86×10 ⁴	3.84×10 ³	3.97×10 ³	1.27×10 ⁵	6.49×10 ⁶	1.19×10 ⁶
Resolution	arcsec	10-150 x 10 ⁻³	1.4 - 44	420	2	660	5	88	11	16	192	7	7	0.25
Baseline or Size	km	217	1 - 35	0.1	27	0.064	100	0.5	4	2.7	225	6	80	150
Frequency Range	GHz	1.3-1.8, 4-8, 22- 24	1 - 50	0.2 - 50+	0.15, 0.23, 0.33, 0.61, 1.4	0.44 to 24	0.03 - 0.22	0.1 - 3	0.7 - 2.5, 0.7 - 10	0.3 - 8.6	0.3 - 10	0.7-1.8	0.050 - 0.350	0.35-14
Bandwidth	MHz	400	1000	400	450	400	4	800	1000	160	1000	300	300	770
Cont. Sensitivity	µJy-hr ^{-1/2}	27.11	3.88	5.89	6.13	16.26	266.61	0.92	3.20	20.74	0.89	28.89	3.36	0.75
Sensitivity, 100 kHz	µJy-hr ^{-1/2}	1714	388	373	411	1029	1686	82	320	830	89	1582	184	66
SEFD	Jy	46.0	10.4	10.0	11.0	27.6	45.2	2.2	8.6	22.3	2.4	42.5	4.9	1.8

Table 1: A table of typical performance measures for a variety of radio telescopes (extant and under construction).

SKA (Resulting) Concept: High Sensitivity & Wide Field of View

- > Consisting of many small antennas
- > World's highest sensitivity
- > World's highest survey speed
 - » Time Domain *Radio* Astronomy available!
 - » Transient science effective

Exploring the Universe with the world's largest radio telescope

(& Wide Band in SKA₂?)

Requirements

Commensal System

Robotic Follow-up System

Japanese Contribution?

VLBI Follow-up

SQUARE KILOMETRE ARRAY

- The slide design is based on an SKA official (?) template but slightly customized.
- The SKA webpage: <u>www.skatelescope.org</u>