

Study of the ISM in nearby molecular cloud regions based on the optically thick HI

Katsuhiro Hayashi (Nagoya University)

Ryuji Okamoto, Hiroaki Yamamoto, Tsunefumi Mizuno, Takahiro Hayakawa, Hidetoshi Sano, Kengo Tachihara and Yasuo Fukui

> Dec 16, 2016, CTA Conference @ICRR, University of Tokyo

- Introduction of the local ISM
- Total gas column density model
- Target molecular clouds (Perseus and Chamaeleon)
- Optically thick HI in the local ISM

Local Inter Stellar Medium

- HI: 21 cm line, $N_{\rm HI}$ = 1.823 x 10¹⁸ x $W_{\rm HI}$ (optically thin approximation)
- H₂: 2.6 mm CO line, gas mass inferred by using $X_{CO} = N_{H2}/W_{CO}$

Dust Grains

- Mixed with gas components
- Promotes constructions of molecular clouds => evolution of the ISM
- Correlation between gas and dust => total gas column density model
- Many studies of dust properties (e.g., dust optical depth at 353 GHz: τ₃₅₃) by Planck

(e.g., ; Planck Collaboration XIII, 2014; Planck collaboration XXVIII, 2015)

Diffuse γ-ray Emission

γ -rays ~ CRs x ISM (or ISRF)

- ISM distribution measured by other wavelengths => CR density and spectrum "measured" CRs => gas distribution, volume and property
- Many studies of diffuse gamma-rays by Fermi-LAT

(e.g., Ackermann+12, ApJ, 755, 22; Casandjian+15, ApJ, 806, 240; Planck collaboration XXVIII, 2015)

Dark Gas

τ₃₅₃-W_{HI} Relation

- Larger scatter at lower T_d
 - "Dust property evolution" or HI emission is saturated ? = "optically thick HI"

• Assuming uniform dust property in the local ISM and the optically thin at higher T_d

- $-N_{\rm H}$ model with linear relation \rightarrow ~2-2.5 times larger HI density
- -Alternative interpretation of DG (optically thick HI hypothesis)

Optically thick HI

Non-linear Relation

Non-linear relation b/w N_H and dust optical depth

 Evidence for grain evolution in dense gas by aggregation processes

Accurate measurements of the local interstellar hydrogen

Total column density (N_H) model based on dust optical depth (τ_{353})

 $\tau_{353:}$ transparent to the interstellar gas even in dense core regions => accurate measurements of the interstellar gas

Explore possibility of the optically thick HI, taking into account dust evolution effects

Correlation with gamma-rays

=> CR density/spectrum and gas properties (Xco, gas mass) in the local ISM

Target Molecular Clouds

Right Ascension (J2000)

	Perseus	Chamaeleon
Distance	~300 pc	~170 pc
Diameter	~50 pc	~30 pc
Mass (H ₂)	~3x10⁴ Msolar	~1x10 ⁴ Msolar
star-forming regions	IC348, NGC1333	

Dataset / Physical properties / ROI

Dataset / Physical properties / ROI

τ₃₅₃-*W*_{HI} (Perseus and Chamaeleon)

Scattering characterized by T_d distribution

Linear relation b/w $N_{\rm H}$ and τ_{353} in all sky (Fukui+15)

τ₃₅₃-*W*_{HI} (Perseus and Chamaeleon)

Scattering characterized by T_d distribution

Linear relation b/w $N_{\rm H}$ and τ_{353} in all sky (Fukui+15) Possible non-linear relation b/w $N_{\rm H}$ and τ_{353} e.g., $\alpha \sim 1.3$ in Orion (Roy+13)

$$\frac{N_{\rm H}(l,b)}{N_{\rm H,ref}} = \left(\frac{\tau_{353}(l,b)}{\tau_{353,\rm ref}}\right)^{1/\alpha}$$

If dust grows with density in time, what is α ?

Correlation between τ_{353} and A_J based on the assumption that A_J represents N_H

A_{J} vs. τ_{353}

Katsuhiro Hayashi

A_{J} vs. τ_{353}

τ_{353} -*W*_{HI} (Perseus)

τ_{353} -*W*_{HI} (Perseus)

• Correlation of α = 1.3 is much better than that of α = 1.0

Possible large amount of HI with higher τHI (>~1) characterized by lower Td

τ_{353} -*W*_{HI} (Perseus)

Possible large amounts of HI with lower Ts (<100 K) characterized by lower Td

τ₃₅₃-W_{HI} (Chamaeloen)

- Correlation of α = 1.2 is much better than that of α = 1.0
- Possible large amount of HI with high τHI (>1) characterized by lower Td

τ₃₅₃-W_{HI} (Chamaeloen)

Possible large amount of HI with lower Ts (<100 K) characterized by lower Td

HI Optical Depth (T_{HI})

Gas Temperature (*T*_s)

HI Column Density (N_{HI})

Ratio of N_{HI}/N_{HI}*

Uncertainty of Recent Gamma-ray Studies

+ other gamma-ray background

- Interstellar gas divided into HI, H₂ and DG
- Uniform T_s (> 100 K) or optically thin approximation in N_{HI} map
- Uniform and linear gas-to-dust ratio in each phase (HI, H₂, DG)
- Our results show possible large amount of the optically thick HI \rightarrow Re-consider local CR density and gas properties (*X*co, gas mass)

Katsuhiro Hayashi

- Infer the HI column density in the local molecular cloud regions (Perseus and Chamaeleon) using dust optical depth (τ₃₅₃).
- Non-linear relation (α ~ 1.25) between gas and dust (A_J and τ₃₅₃) possibly due to dust evolution effects.
- Even if we take account of the non-linear effects, a large amount of HI gas (~1.6 times larger that that of the optical thin approximation) with higher τHI (>~1) can be suggested.

Future work

- More detailed evaluation of uncertainty in the HI column density model due to dust property effects
- Studies of local CRs and gas properties using diffuse gamma-ray emission, taking into account the possible uncertainty in the column density model

Gas Tracer

- CRs x ISM
- high energy photos transparent to interstellar gas
- Good gas tracer under the uniform CR density

Dust

- τ₃₅₃: dust optical depth at 353 GHz
- Small optical depth: ~10⁻⁵ transparent to the interstellar gas
- Mixed with gas
- Good gas tracer

Good spatial correlation between y-rays and dust emission

Masking

W_{HI}: GASS (Parkes Galactic All Sky Survey)

W_{CO}: NANTEN (¹²CO (J=(1-0)))

NH model (t353,ref/NHref)

