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Pulsar-related Science in GeV and TeV

® Pulsars and their vicinity (including pulsar wind nebula and
the associated supernova remnants) are some of the best
sites to produce GeV and TeV emissions.

® One important implication of GeV and TeV observations of

pulsars is to constrain the emission geometry and
mechanisms.

® Fermi, H.ES.S., and MAGIC have already produced many
important results (e.g., pulsed gamma-rays from pulsars,

gamma-rays from globular clusters, long-term gamma-ray
variability of pulsars)

® CTA will bridge the gap between Fermi and MAGIC/H.E.S.S.



Early Pulsar Science with LST

® Pulsed gamma-rays of pulsars

® Can a single LST perform pulsar timing for
bright pulsars!?

® Spectral shape of bright pulsars
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Stellar Encounters




Why Globular Clusters!?
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Number of Pulsars
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141 pulsars in 26 clusters

Globular Cluster
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Gamma-ray Emission from GCs

® Gamma-ray (>100 MeV) emission is likely to be
from MSPs

® Pulsed curvature radiation arising near the polar

cap and /or in outer magnetospheric gaps (e.g.,
Zhang & Cheng 2003; Harding et al. 2005;Venter
& De Jager 2008)

® |nverse Compton scattering photons between the
relativistic electrons/positrons in the pulsar winds
and the background soft photons (e.g., Bednarek

& Sitarek 2007; Cheng et al. 2010)
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Gamma-ray Emission from GCs

Most of the gamma-ray MSPs are very nearby (< | kpc) => they
are very faint.

The nearest GCs are several kpc from us. It is almost impossible

to detect individual gamma-ray MSPs in GCs except from a
pulsation search (e.g., NGC 6624 and M28).

However, GCs can have tens to hundreds of MSPs because of the
enhanced dynamical formation.VWe can detect the collective
gamma-ray emission with sensitive instruments.

Terzan 5 and 47 Tuc are the best candidates since they have the
largest number of MSPs in GCs.

EGRET only obtained upper limits
Fermi/LAT and H.E.S.S./MAGIC can do much better



Theoretical Predictions of MSPs in GCs
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First Gamma-ray detection from a GC (47 Tuc)
Abdo et al. 2009
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Number of Pulsars
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141 pulsars in 26 clusters
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Fermi | 7-month Observations of Terzan 5

Fermi LAT 0.5-20 GeV Fermi LAT 10-20 GeV




Comparison between Terzan 5 and 47 Tuc

® |f the gamma-rays are from inverse compton scattering (Cheng et al.
2010):

® Inverse Compton (IC) scattering between relativistic
electrons/positrons in the pulsar wind of MSPs in the GCs
and background soft photons including cosmic microwave/
relic photons, background star lights in the clusters, the
galactic infrared photons, and the galactic star lights.

® The background soft photon intensity from the Galactic plane

at the position of Terzan 5 is roughly 10 times that of 47 Tuc
(Strong & Moskalenko 1998)

® Terzan 5 should have stronger emission with energies > 10 GeV
(Cheng et al. 2010)

® Future CTA observations may tell



TeV Observations of GCs

® The only confirmed case is Ter 5 detected
by H.E.S.S. (Abramowski+ 201 |)
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TeV Observations of GCs

H.E.S.S.
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Is the TeV emission associated with Ter 5?

The TeV centroid is 4 arcmin from the centre of Ter 5, way
outside the half-mass radius

It is marginally within the tidal radius of the GC

The TeV emission is extended



Prospects of CTA

® Case study:Ter 5

® Based on H.E.S.S. observations: 0.44-24 TeV
photon flux = 1.2x10"'2 cm%s! (1.5% of Crab)
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What about LST only?
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® With two LSTs, Ter 5 may be marginally detected with 50h
exposure time

® Need simulations to verify (response files for LST-only
observations are required)

® |t can be easily detected with three LSTs in 50h

® The next best target for LST-N is M5 based on H.E.S.S.
(Abramowski+ 2013) but an upper limit of 7.2x10'3 cm%s!
indicates that a full array is required




