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po Outline

RIK=N

e Background

* Nonlinear diffusive shock acceleration (DSA) in relativistic
shocks

* Nonlinear shock acceleration of electrons

 Afterglow observations by CTA?
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Afterglow is long-lived (hours, days, months) multiwavelength
relic of GRB
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Observations of GRB afterglows cover orders of magnitude in
time and energy
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Figure 10. Observations of the afterglow of GRB 130427A spanning from the low-frequency radio to the 100 GeV LAT bands, interpolated to a series of coeval
epochs spanning from 0.007 days (10 minutes) to 130 days after the burst. Overplotted over each epoch is our simple forward+reverse shock model from standard
synchrotron afterglow theory, which provides an excellent description of the entire data set, a span of 18 orders of magnitude in frequency and 4 orders of magnitude
in time. The solid line shows the combined model, with the pale solid line showing the reverse-shock and the pale dotted line showing the forward-shock contribution.
The “spur” at 2~10'% Hz shows the effects of host-galaxy extinction on the NIR /optical /UV bands. Open points with error bars are measurements (adjusted to be
coeval at each epoch time); pale filled points are model optical fluxes from the empirical fit in Section 3.4. The inset at lower left shows a magnified version of the
radio part of the SED (gray box) at t = (.7 days.



p. Background
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Current afterglow studies assume extremely simple model for CR
electrons accelerated by shock
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(mostly) Fine if shocks are test-particle and unaffected by B- field
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(Particle-in-cell)

Per PIC simulations, magnetic field may not be negligible, and
accelerated particles may influence shock structure
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Background

Strong B-field turbulence in vicinity of shock can scatter

particles back into upstream region (< diffusive shock
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Interaction between shock, B-field
turbulence, and accelerated
particles important!

Leads to more complicated CR
spectrum than simply EP

PIC simulations impractical if
extended to necessary scales to
model GRB afterglows

Monte Carlo approach presented
here balances self-consistency &
computation time

p. Background

Sironi et al. (2013) (2013Ap)...771...54S)
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Figure 11. Temporal evolution of the post-shock particle spectrum, from the
2D simulation of a yy = 15 electron—ion (m; /m, = 25) shock in a flow with
magnetization ¢ = 107,



po Nonlinear DSA in relativistic shocks

RIK=N
Ellisonetal. (2013) (2013Ap)...776...46E)
Interaction between shock, B-field i ]
turbulence, and accelerated S
particles important! 5 %0 I
. . .« o 0 AR :'::::::::I::::I::::I::::_
Efficient DSA by unmodified shocks 1 = :
does not conserve energy or g 10F P Rl
::: // EE Solid: NL
momentum flux ) /
LN: | - T . ! . E - T A
© Model A do = 2 10" km/s T ]
- N, = 20 i R e e o B e B B
0.1 ¢ _ s ; : P
Q 10k /// 4+ up =2 10" km/s .
,__\0.01 2 5 ,_?‘ C / T Ng=2E]I 3
N e / fen = 3.96
o s lf g = 12 £ 1
10°F 3 " I fooeiee e R .
10_4_ 4 |u...T...I....I.u..*....I.u..l..u.luu..‘:
3 -5 -4 -3 -2 -1 -5 0 5 10
i —log,, (=x) X [rg(}]
107°

Ellison et al. (2013) (2013Ap)...776...46E) log,q P [mpc]



po Nonlinear DSA in relativistic shocks

RIK=N

Interaction between shock, B-field
turbulence, and accelerated
particles important!

Efficient DSA by unmodified shocks
does not conserve energy or
momentum flux

Even in relativistic shocks, must
have precursor & modified
velocity profile
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po Nonlinear DSA in relativistic shocks
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Effects of NLDSA on spectrum of CR
protons:

* Fewer CRs at any particular energy
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po Nonlinear DSA in relativistic shocks
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As shock slows, CR spectrum
changes too

Single-index approach to CR
energy distribution may not
hold at any given instant

Very unlikely to hold across

extended observations of
GRB afterglows

But what about electrons?

Ellison et al. (2013) (2013Ap)...776...46E)
WegE—T———7T——7T——T1T 173

log,o P [mpc]

Figure 10. Nonlinear particle distributions calculated downstream from the
shock in the shock rest frame for various shock speeds as indicated (Models
A-E in Table 1). The spectrum for the yp = 1.5 shock (dashed black curve)
shows the transitional nature of nonlinear DSA.



po Electron DSA in relativistic shocks
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Electron acceleration much less
efficient than proton acceleration

Without energy transfer from ions,
GRB afterglow would be extremely
faint

Warren et al. (2015) (2015MNRAS.452..431W)
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Figure 3. Protons (black curves) and electrons (red curves) from UM
shocks with different fion as indicated. These spectra, multiplied by p>2*,
are calculated downstream from the shock. in the shock frame, and have
arbitrary overall normalization although the relative normalization between
electrons and protons is absolute.
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Warren et al. (2015) (2015MNRAS.452..431W)
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Figure 3. Protons (black curves) and electrons (red curves) from UM
shocks with different fion as indicated. These spectra, multiplied by p>2*,
are calculated downstream from the shock. in the shock frame, and have
arbitrary overall normalization although the relative normalization between
electrons and protons is absolute.
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For protons, not much difference
between unmodified DSA and
nonlinear DSA

Ellison et al. (2013) (2013Ap)...776...46E)
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Figure 9. Comparison of UM shock spectrum (Model D; same as in Figure 3)
with NL shock spectrum. The shock structures for these yp = 10 shocks are
shown in Figure 6. The solid (black curves) are calculated downstream from the
subshock in the shock rest frame and the dashed (red) curves are calculated in
the shock precursor at x = —100r.
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Warren et al. (2015) (2015MNRAS.452..431W)

For protons, not much difference
between unmodified DSA and
nonlinear DSA
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Figure 6. Downstream, LPF spectra for the unmodified shock shown in
Fig. 5 (top panel, Model D) and the non-linear shock shown in Fig. 5
(bottom panel, Model E). Note the pronounced ‘superthermal’ tail on the
electron distribution.
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Figure 6. Downstream, LPF spectra for the unmodified shock shown in
Fig. 5 (top panel, Model D) and the non-linear shock shown in Fig. 5
(bottom panel, Model E). Note the pronounced ‘superthermal’ tail on the
electron distribution.
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p. Modeling a GRB afterglow
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Use Blandford—McKee solution for
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Po Modeling a GRB afterglow
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Stronger magnetic field increases p* max energy, decreases e™
max energy
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po Conclusions

RIK=N

If CR acceleration by relativistic shocks efficient, must consider
nonlinear interaction between shock & CRs

Shape of electron spectrum strongly affected by energy
transfer & shock speed

Single-value models of GRB afterglows highly likely to be
deficient. Combining entire afterglow into one p, g, €, etc.
misses a great deal of structure

With CTA, can (hopefully) observe early phase of afterglow in
great detail to test theories of relativistic shocks and diffusive
shock acceleration
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Low-B, model fails to
reproduce observed
X-ray fluxes; high-B,
model overproduces at
early times
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