

最高エネルギー宇宙線による
 極限宇宙観測

(研究会 高エネルギーガンマ線で見る極限宇宙2014)

野中敏幸 東京大学宇宙線研究所 Telescope Array Collaboration

Highest energy cosmic ray observation

Cosmic ray energy spectrum 10¹⁵eV – 10²⁰eV

Anisotropy

♦ Trajectory of cosmic ray in galactic magnetic field.

Using arrival direction, it is possible to search correlation with Source position

Inter galactic magnetic field:

generally random field. $B < ~10^{-9}G$

$$\theta(E,d) \approx \frac{(2dI_c/9)^{1/2}}{r_g} \approx 0.8^{\circ} q \left(\frac{E}{10^{20} \text{ eV}}\right)^{-1} \left(\frac{d}{10 \text{ Mpc}}\right)^{1/2} \left(\frac{I_c}{1 \text{ Mpc}}\right)^{1/2} \left(\frac{B}{10^{-9} \text{ G}}\right) \text{ Few degree}$$

Spectrum

TA experiment, Observation results

Telescope Array Experiment

Observation of highest cosmic ray

Telescope Array Collaboration

T. Abu-Zayyad¹, R. Aida², M. Allen¹, T. Arai⁴, R. Azuma³, E. Barcikowski¹, J.W. Belz¹, T. Benno⁴, D.R. Bergman⁵, S.A. Blake¹, O. Brusova¹, R. Cady¹, B.G. Cheon⁶, J. Chiba⁷, M. Chikawa⁴, E.J. Cho⁶, L.S. Cho⁸, W.R. Cho⁸, F. Cohen⁹, K. Doura⁴, C. Ebeling¹, H. Fujii¹⁰, T. Fujii¹¹, T. Fukuda³, M. Fukushima^{9²²}, D. Gorbunov¹², W. Hanlon¹, K. Hayashi³, Y. Hayashi¹¹, N. Hayashida⁹, K. Hibino¹³, K. Hiyama⁹, K. Honda², G. Hughes⁵, T. Iguchi³, D. Ikeda⁹, K. Ikuta², S.J.J. Innemee⁵, N. Inoue¹⁴, T. Ishii², R. Ishimori³, D. Ivanov⁵, S. Iwamoto², C.C.H. Jui¹, K. Kadota¹⁵, F. Kakimoto³, O. Kalashev¹², T. Kanbe², H. Kang¹⁶, K. Kasahara¹⁷, H. Kawai¹⁸, S. Kawakami¹¹, S. Kawana¹⁴, E. Kido⁹, B.G. Kim¹⁹, H.B. Kim⁶, J.H. Kim⁶, J.H. Kim²⁰, A. Kitsugi⁹, K. Kobayashi⁷, H. Koers²¹, Y. Kondo⁹, V. Kuzmin¹², Y.J. Kwon⁸, J.H. Lim¹⁶, S.I. Lim¹⁹, S. Machida³, K. Martens²², J. Martineau¹, T. Matsuda¹⁰, T. Matsuyama¹¹, J.N. Matthews¹, M. Minamino¹¹, K. Miyata⁷, H. Miyauchi¹¹, Y. Murano³, T. Nakamura²³, S.W. Nam¹⁹, T. Nonaka⁹, S. Ogio¹¹, M. Ohnishi⁹, H. Ohoka⁹, T. Okuda¹¹, A. Oshima¹¹, S. Ozawa¹⁷, I.H. Park¹⁹, D. Rodriguez¹, S.Y. Roh²⁰, G. Rubtsov¹², D. Ryu²⁰, H. Sagawa⁹, N. Sakurai⁹, L.M. Scott⁵, P.D. Shah¹, T. Shibata⁹, H. Shimodaira⁹, B.K. Shin⁶, J.D. Smith¹, P. Sokolsky¹, T.J. Sonley¹, R.W. Springer¹, B.T. Stokes⁵, S.R. Stratton⁵, S. Suzuki¹⁰, Y. Takahashi⁹, M. Takeda⁹, A. Taketa⁹, M. Takita⁹, Y. Tameda³, H. Tanaka¹¹, K. Tanaka²⁴, M. Tanaka¹⁰, J.R. Thomas¹, S.B.Thomas¹, G.B. Thomson⁵, P. Tinyakov^{12²²¹, I. Tkachev¹², H. Tokuno⁹, T. Tomida², R. Torii⁹, S. Troitsky¹², Y. Tsunesada³, Y. Tsuyuguchi², Y. Uchihori²⁵, S. Udo¹³, H. Ukai², B. Van Klaveren¹, Y. Wada¹⁴, M. Wood¹, T. Yamakawa⁹, Y. Yamakawa⁹, H. Yamaoka¹⁰, J. Yang¹⁹, S. Yoshida¹⁸, H. Yoshii²⁶, Z. Zundel¹}

1University of Utah, High Energy Astrophysics Institute, Salt Lake City, Utah, USA 2University of Yamanashi, Interdisciplinary Graduate School of Medicine and Engineering, Kofu, Yamanashi, Japan 3Tokyo Institute of Technology, Meguro, Tokyo, Japan 4Kinki Unversity, Higashi Osaka, Osaka, Japan **5Rutgers University, Piscataway, USA** 6Hanyang University, Seongdong-gu, Seoul, Korea 7Tokyo University of Science, Noda, Chiba, Japan 8Yonsei University, Seodaemun-gu, Seoul, Korea 9Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba, Japan 10Institute of Particle and Nuclear Studies, KEK, Tsukuba, Ibaraki, Japan 11Osaka City University, Osaka, Osaka, Japan 12Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia 13Kanagawa University, Yokohama, Kanagawa, Japan

14Saitama University, Saitama, Saitama, Japan
15Tokyo City University, Setagaya-ku, Tokyo, Japan
16Pusan National University, GeumJeong-gu, Busan, Korea
17Waseda University, Advanced Research Institute for Science and Engineering, Shinjuku-ku, Tokyo, Japan
18Chiba University, Chiba, Chiba, Japan
19Ewha Womans University, Seodaaemun-gu, Seoul, Korea
20Chungnam National University, Yuseong-gu, Daejeon, Korea
21University Libre de Bruxelles, Brussels, Belgium
22University of Tokyo, Institute for the Physics and Mathematics of the Universe, Kashiwa, Chiba, Japan
23Kochi University, Kochi, Kochi, Japan
24Hiroshima City University, Hiroshima, Hiroshima, Japan
25National Institute of Radiological Science, Chiba, Chiba, Japan
26Ehime University, Matsuyama, Ehime, Japan

Telescope Array Collaboration

Fluorescence Detectors

FD event example

TA Surface Detector

SD event example

r = 800m 高エネルギーガン

Energy spectrum at E>10^{18.2}eV

- Period :
 2008 May 2014 May
 (6 years)
- ✤ Cut conditions :
- # of used detectors >=5
- Zenith angle < 45°
- Energy > 10^{18.2}eV
- w boundary cut
- Dip energy E_d Log10(E_d/eV) = 18.70±0.02
- ✤ Break energy E_b Log₁₀(E b/eV) = 19.74±0.04
 → Consistent with GZK cut off
- ❖ Significance of suppression @ E >10^{19.8}eV N_{exp} = 85.9 N_{obs} = 32 → 6.59 σ

♦ 6year TA SD spectrum

Energy spectrum at E>10^{18.2}eV

- ♦ Comparison with Auger spectrum
- Energy scale shifted artificially at Auger x 1.1
- spectrum shape agree well at Dip region (10^{18.5}eV) start disagree E> 10^{19.6}eV
- Plot is from 2013 ICRC. TA spectrum shape is almost same in updated data.
- Study of Declination dependence of the spectrum is on going.

(Collaboration study between Auger-TA)

ICRC2013 Y.Tsunesada

Cosmic ray model E>10^{18.2}eV

Search best fit parameter -p , m , $\Delta log_{10}(E)$, C_{n*}

Cn_{*} (normalization factor)

Modeling source distribution E>10^{18.2}eV

<Best fit source parameter (*uniform)>

P=2.21 m = 6.4 ΔLogE -0.04* (uniform)

Z_{min} : Distance of closest source in the model

Increase Z_{min} to find 95% incompatibility between model spectrum and data point.

Data compatible with pure proton model at E>10^{18.2}eV Under the condition of best fit model , constraint on Z_{min} : $Z_{min} < 0.010$ (~40 Mpc) in 95% C.L.

New result from TA Low energy Extension

高エネルギーガンマ線で見る極限宇宙2014

http://iopscience.iop.org/2041-8205/790/2/L21/suppdata/apjl498370t1_mrt.txt

How it looks at south hemisphere with same analysis?

From Slide H.Sagawa @ JPS symposium 09/22 2014

- No adjustment energy scale
 Use original energy at both
 experiment
- Cen-A region enhancement $^{3}\sigma$
- Virgo cluster position is not bright at Auger data also.
 (~20MPC)

Hotspot cosmic ray comes from very close distance like Cen-A?

Is it consist from single source? or coincidence of two source?

If consist from single source why very large structure? 20°?

Chemical composition from X_{max}

✤ Period :

2008 May - 2014 May

MD station + TASD (Hybrid analysis) arXiv:1408.1726 (pattern recognition cut -> better resolution of Xmax)

Look for other information

Analysis for spectrum difference b/w Sky area

Summary

Anisotropy

Hotspot found E>57EeV

→ More event to resolve structure of Hot spot. More spot , Composition study with SD,

Spectrum shape

Dip at $10^{18.5}eV \rightarrow e+e-energy loss - >Dip Cut off at <math>10^{19.7}eV \rightarrow consistent$ with GZK

Comparison between Sky area (new)

Composition

E>10^{18.2}eV consistent with proton,

(E>10^{19.4}eV need more statistics)

TALE

TALE

Start Data taking,

6-Year Data by TA

5-year data New 1-year data

2008 May 11 – 2014 May 11 (87 events) 28

Significance Map 6 years Oversampling with 20° -radius circle 60 5 E > 57 EeV Dec. (deg) 4 30 3 2 360 180 0 R.A. (deg) -1 -2 -30 -3 -4 -60

Max significance 5.55 σ (N_{on} = 23, N_{bg}=5.49) Slide K.Kawata @ ICRR seminar Centered at R.A=148.4°, Dec.=44.5° (shifted from SGP by 17°) Chance probability of appearing in isotropic sky \rightarrow 4.0 σ

TAx4

- Plan to expand TA by 4 times (3,000km²)
 - 1. Add 500 scint. counters with 2.1 km spacing
 - 2. 10 refurbished HiRes tels
- Science (3-year observation)
 - 1. Anisotropy study \rightarrow Expect >>5 σ 2. Ymax & E. Spectrum
 - 2. Xmax & E Spectrum at the highest energy region
 - 3. Search UHE photon & neutrino
 - 4. correlation search with Other observation. :
 - **ex)** Fang, Fujii, Linden & Olinto, arXiv:1404.6237 (IceCube event x TA Hot spot.)

Slide K.Kawata @ ICRR seminar

Summary

Anisotropy

Hotspot found E>57EeV

→ More event to resolve structure of Hot spot. Composition study with SD,

Spectrum shape

Dip at $10^{18.5}eV \rightarrow e+e-energy loss - >Dip Cut off at <math>10^{19.7}eV \rightarrow consistent$ with GZK

Comparison between Sky area (new)

Composition

E>10^{18.2}eV consistent with proton,

(E>10^{19.4}eV need more statistics)

TALE

Start Data taking,

TALE

Back up

Other type of observation

Fang, Fujii, Linden & Olinto, arXiv:1404.6237

Two IceCube neutrinos among northern 4 events are coincident with the TA hotspot. $\rightarrow 2\sigma$ level by chance

銀河系外宇宙線源の進化パラメーター

進化パラメーター:*m* ρ □□□+*z*)^m

10²⁰eVではz=0.05 10¹⁸eVではz=1 10¹⁷eVではz=4 の宇宙線源が寄与する

Map of $\frac{N_{off}(E>E_b)}{N_{all}(E>E_b)}$ and E_b at random distribution

Count chance cases

