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_ 81 y-ray Pulsar Observations

After 2008, LAT aboard Fermi has detected

more than 117 pulsars above 100 MeV.

Fermi/LAT point sources (>100 MeV)

2nd LAT catalog (Abdo+ 2013)

Large Area
Telescope

Ferm/ y-ray

space telescope

Other pulsars

LAT rad io-loud pulsar
LAT rad io-quiet pulsar
Radio MSP fram LAT UniD

LAT mill second puls &




$1 y-ray Pulsar Observations

Ground-based, Imaging Air Cherenkov Telescopes (IACTs)
found pulsed emission above 25 GeV from the Crab pulsar.

VERITAS (> 120 GeV) MAGIC (25-416 GeV)
Aliu+ (2011, Science 334, 69) Aleksic+ (2011a,b)

Counts per Bin

P2 OFF P1 P2

2700 MAGIC, 46 - 416 GeV Entries 114234

VERITAS > 120 GeV | | Taps = 4366.8 min

2600 22, =128.85 (8.60)

3700 H Test = 103.33 (6.40)

22500 x¥/ndf = 170.19/50 (7.70)

- 8000 N,. = 1175+-116 Sig = 10.4c

! !
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Uiptienl X-Roy Gamariz Ray

Pulsed broad-band spectra e

®High-energy (~GeV) o ,Crab /“"ﬂ [

=15
. . . Jar 3
photons are emitted mainly . 5 |10
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via curvature process by ! s
e . | R
ultra-relativistic, primary . /(a E
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Pulsed broad-band spectra Ovsevig Fscuensy (55

®High-energy (> 100MeV) b ,Crab //—4-.',&9\: -5'11

Py
hotons are emitted mainly | | ™ 10°
P o B1059-58 /ﬂnf ;|

via curvature process by
. . . = " 1
ultra-relativistic et’s. oo o A'_@ 2

,_
onom

What is the curvature process?

Consider relativistic charges moving along curved B. They emit
curvature radiation, provided P,» P.. A charge e with Lorentz factor

yemits the following synchrotron radiation, _ cf. synchrotron case

//
3 c ! 3 C
characteristic energy: h@, . = —h7/3 — 1 ha, = —h7/3 —
2 R | 2 r,
2| 2 2\
362 o’ | 3e” | c
1ati — | - S
radiation power: F,  =—=7 - : F e Y 4 -



Opiienl X-Hoy Camaniz Ray

Pulsed broad-band spectra osniersmiia ™

®High-energy (>100MeV) Crab .
hotons are emitted mainl :
b Y B1059-58 A

via curvature process by
ultra-relativistic, primary e*’s.

®However, > 20 GeV,

ICS. by Secondar}f & becomes important,
tertiary e*’s contributes. because & » m,c2.

Fig. Two
Lorentz frames
when a photon
IS up-scattered
by a relativisitic
€.

For pulsar VHE emissions,
Klein-Nishina effect

&Q,:gf

5B

observer’s frame K e” rest frame K’




§ 2 Pulsar Emission Mod_e_ls

Let us begin with considering how and
where such incoherent, high-energy
photons are emitted from pulsars.




§2 Pulsar Emission Models

e

High-energy emissions are realized when the
rotational energy of the NS is electro-
dynamically extracted and partly dissipated in

the magnetosphere. (e.g., unipolar inductor)
_.--"'_'--1,_ |
Magnatic __.a-"'h:' —-—lr—" I
Field Lines L 1|r -
fhotation-]) I| [ 4 Magnetic and rotation
e axes are generally
misaligned.
Pulsars:

rapidly rotating, highly
magnetized NS




§2 Pulsar Emission Models

CRAB PSR Bie0g-68  VELA PSRB1T06-44 PSR B1851432 GEMINGA PSR B1055-52

Tl \h N

OPTICAL

I A

GAMMA-RAY

Pulsar emission takes
place at ...

TIME

|,_.

® Polar gap
(r <30 km), near NS surface

INTEMSITY AS A FUNCTICON

® Outer gap, or slot gap

(I’ ~103 km), near the llght P~33MSEC P~150mSEC P~B9mSEC P~102mSEC P~39mSEC P~ 237 MSEC P~ 107 mSEC
. TIME IN FRACTIONS OF A PULSE PERIOD
cylinder

(outside the null surface)

® Wind region

We neglect the emission
from the wind region,
because they are not pulsed.

Chandra



§2 Pulsar Emission Models

Pulsar emission takes
place at ...

® Polar gap E, arises in a limited volume near
the PC surface due to heavy

(r <30 km), near NS surface . s
screening by pair discharge.

® Quter gap, or slot gap E, arises in a greater volume in
(r ~103 km), near the light the higher altitudes due to less
cylinder efficient pair production.

(outside the null surface)



§2 Pulsar Emission Models

Early 80’s, the polar-cap (PC) model was proposed.
(Daugherty & Harding ApJ 252, 337, 1982)

A single PC beam can produce a variety of pulse profiles.




§2 Pulsar Emission Models

Early 80’s, the polar-cap (PC) model was proposed.
(Daugherty & Harding ApJ 252, 337, 1982)

A single PC beam can produce a variety of pulse profiles.

However, the emission solid angle (AC «1 ster) was too
small to reproduce the wide-separated double peaks.

Wide-separated
double peaks

oP LW1

‘=ﬁ ;




§2 Pulsar Emission Models

, —

Early 80’s, the polar-cap (PC) model was proposed.
(Daugherty & Harding ApJ 252, 337, 1982)

A single PC beam can produce a variety of pulse profiles.

However, the emission solid angle (A€2 «1 ster) was too
small to reproduce the wide-separated double peaks.

Thus, a high-altitude emission drew attention.



§2 Pulsar Emission Models

To contrive a higher-altitude emission model, the polar

gap was extended into higher altitudes (in fact, by hand).
Muslimov & Harding (2004a, ApJ 606, 1143;
2004b, ApJ 617, 471)
Dyks, Harding & Rudak (2004, ApJ 606, 1125)
Harding+ (2008, ApJ ApJ 680, 1378)

They explained, e.g., the widely separated double peaks.

widely separated double peaks
<

>

OP LW1 Pl TWI [Pl P2 Bridge LW2 P2 TW2 0y

= O
S 2
o O

o
=
<

Gamma Rays

-




§2 Pulsar Emission Models

To contrive a higher-altitude emission model, the polar

gap was extended into higher altitudes (in fact, by hand).
Muslimov & Harding (2004a, ApJ 606, 1143;
2004b, ApJ 617, 471)
Dyks, Harding & Rudak (2004, ApJ 606, 1125)
Harding+ (2008, ApJ ApJ 680, 1378)

They explained, e.g., the widely separated double peaks.

However, unfortunately, the higher-altitude SG model
contains two fatal electro-dynamical inconsistencies.



§2 Pulsar Emission Models

Problem 1: insufficient luminosity

This numerical conclusion 1s confirmed also analytically

(KH’08), showing that a SG can produce only a
negligible y-ray flux.

=3 [
10 JTM* phase—averaged
o H*"-*'**i
N _5 49 ¥ g For details, please also
E 10 ; ; refer to my talk last year
iy el P 9 at CTA-Japan meeting.
S 10
)
=107/
L | I¢
107 1071 10"10%10°10%10°10°10
shiskon eneray [Mel] KH (2008) ApJ 688, LL.25




§2 Pulsar Emission Models

Problem #2: unphysical assumption of p,/B

In the SG model, they assume p;/B distribution that
contradicts with the Maxwell equation.

For details, please
also refer to my
talk last year at
CTA-Japan
meeting.

-0.28F

I
o
w
M

=036

charge density / (£2B/2nc)

i GR PC acclerator
~\ assume p1(£2B/2nc)

Pyl (2B/2xc) in SG model

Unfortunately, this
assumption 1s unphysical.

Newtonian PC accelerator

0 1 2 3

distance along fieldline / NS radius



§2 Pulsar Emission Models

e

Problem #2: unphysical assumption of p,/B

In fact, to solve the insufficient flux problem (prob. #1),
a geometrically thick version of the higher-altitude SG
model, the pair-starved PC (PSPC) model, was proposed
(Venter+ 2009, ApJ 707, 800). However, the PSPC model
adopts the same p;/B distribution, which means that the
same difficulty applies.

Higher-latitude SG model & PSPC model contradict
with Maxwell eq. That 1s, higher-altitude extension
of the polar-cap model failed.




'§2 Pulsar Emission Models

As an alternative possibility
of high-altitude emission
model, the outer gap model
was proposed.

Cheng, Ho, Ruderman
(1986, ApJ 300, 500)

So far, there have been found no
serious electro-dynamical
problems in the OG model (unlike
SG or PSPC model).




§2 Pulsar Emission Models

Indeed, the sub-TeV components from the Crab pulsar
shows that pulsed y-rays are emitted from the outer
magnetosphere (YB=-¢e). Crab (P1+P2)
Aleksic + (2012)
o0} A&A 540, A69
. _ T e ONC ] e R
We thus consider the o " Pt REaRSSES
outer-gap model - } \ :
(Cheng+ 86, ApJ 300,500) 2 TN D
in this talk. i | 1N
S 1072 | T e e e | #
O = (P i (Aleksic et al. 2011) _+' 1
X e (PM%Gmﬁ'ﬁaﬁ%\bdo et al. 2010) t 1
- PEnf AT ! A —
L O~ (PIERRIie[ATAT (Aleksic et al. 2011) #—1 |
o e AR e, v |
|3 R B | o N
—— tot. pulsed, OG+pairs (this work)
10f 190 190

Energy [ GeV ]



§2 Pulsar Emission Models

Various attempts have been made on recent OG model:

3-D geometrical mod

— phase-reso!

— atlas of ligl

el

'ved spectra  (Cheng + *00; Tang + ’08)
ht curves for PC, OG, SG models
(Watters + *08)

2-D self-consistent solution (Takata + *06; KH ’06)

3-D self-consistent solution
— phase-resolved spectra, absolute luminosity
if we give only P, dP/dt, o, kT (+()  (this talk)



§2 Pulsar Emission Models

—

3-D self-consistent OG model

Death line of normal and millisecond PSRs on (P,I.’) plane
(Wang & KH 2011, ApJ 736, 127)

Spectral hardening of trailing light-curve peak
(KH 2011, ApJ 733, L49)

Evolution of y-ray luminosity of rotation-powered PSRs
(KH 2013, ApJ 766, 93) Today'’s talk I.

Today's talk |l.

Crab pulsars HE-VHE pulsed emission
(Alkesic + 2011, ApJ 742, 43; Alkesic + 2012, AA 540, A69)

Comment on Lorentz invariance violation tests.




§3 Modern Outer-gap Model: Formalism

—

Self-sustained pair-production cascade 1n a rotating
NS magnetosphere:

e*’s are accelerated by E, <

l

Relativistic et/e” emit y-rays via
synchro-curvature, and IC processes

|

y-rays collide with soft photons/B to
materialize as pairs in the accelerator




§3 Modern OG Model: Formalism

Poisson equation for electrostatic potential v :

Wy W W
~Viy=—""T —— L —— T =A4x(p-— ,
W axz ayz azz (IO IOGJ)
where
B
E, = —a—w Por =— 2-B z
| ox Y 27TC X

p)=e|dy[dx[N. (7,20~ N_ (%1, 1)][+P., (),

N, /N_: distrib. func. of e*/e”
y: Lorentz factor of e*/e”
% : pitch angle of e*/e”

X=(x,y,2) .



§3 Modern OG Model: Formalism

Assuming d+Qd ;=0 , we solve the ¢*’s Boltzmann egs.

Bg\t’ +v- VN, +[eE+C><BJ EZ\;——S,C+SSC+j’0(alv_[ dw

together with the radiative transfer equation,

dl .
dlv — _aVIV + ]V
N,: positronic/electronic spatial # density,

E,: mangnetic-field-aligned electric field,

Sic: ICS re-distribution function, da: solid angle element,
L,: specific intensity, [ : path length along the ray
¢, absorption coefficient, j,: emission coefficient




§3 Modern OG Model: Formalism

Boundary Conditions

To solve the elliptic-type differential eq. (Poisson eq.),
Wwe 1mpose

VY =0 atinner, lower, upper BDs

8_‘1’ =(0 at outer BD

0x particle accelerator
. (potential gap)

L _ane -.--..-..-\.':

JJJJJJJJJJJJJJJJJ

S S S R NSRRI R




Formalism

§3 Modern OG Model

ek ek e ey
Pl e ey
o e e e e

---------
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hyperbolic-type PDE
(e* Boltzmann eq.),

At the inner BD
Wwe 1mpose

To solve the

6,)=0, where 0<@ <x/2 (outgoing)

9

<

9

N, (x",z,7)=0
Iv(xin

To solve the ODE
(radiative transfer eq.),

Wwe 1mpose
That is, no e*/y-ray injection across the BD.
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Formal

§3 Modern OG Model

At the outer BD

N (x*,z,1)=0
I,(x*,z,60,)=0,

)

< 7 (In-going

/4

where 7/2<6

That is, no e*/y-ray injection across the BD.



§4 Gamma-ray vs. Spin-down Luminosities

First, we demonstrate the observed L, Lspino'5 .
o

1

1 DJE

10°°

10”4

1 033

T 2"d LAT catalog
(Abdo + 2013)

gamma-ray luminosity (ergs 5'1)
1032
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1074 10% 108 10%7 107

spin-down luminosity (ergs s™)



§4 Gamma-ray vs. Spin-down Luminosities

, —

To begin with, let us analytically examine the condition
for an OG to be self-sustained. An OG emits the energy
flux (KH 2008, ApJ 688, 1.25)

Q' 1

2
(VE,) ., =0.0450h 22—
c’ d

at distance d by curvature process, where h_ denotes
dimensionless OG trans-B thickness, 4 the dipole moment.

peak

OG luminosity can be, therefore, evaluated as

lLlLZS:24-
L, =236(VF,) . x47d" fo =123 f,h,’ e

o< I

peak

Thus, &, controls the luminosity evolution.



—

§4 Gamma-ray vs. Spin-down Luminosities

To examine £, consider the condition of self-sustained OG.

An inward e emits N,"~10* synchro-curvature photons,
N,"7"~10 of which materialize as pairs.

Each returned, outward e* emits NYO“t~1()5 curvature photons,
N, 704 ~0.1 of which materialize as pairs.
— null-charge surface

G

last-open B field line



§4 Gamma-ray vs. Spin-down Luminosities

N

To examine £, consider the condition of self-sustained OG.

An inward e emits N,"~10* synchro-curvature photons,
N,"7"~10 of which materialize as pairs.

Each returned, outward e* emits NYO“t~1()5 curvature photons,
N, 704 ~0.1 of which materialize as pairs.

That 1s, gap trans-B-field thickness /4 1s automatically
regulated so that N, 7" N,°" 7°"'=1 is satisfied.

last-open B field line



§4 Gamma-ray vs. Spin-down Luminosities

SR

Step 1: Both N,"7" and N,°*'7°" are expressed in terms of
P.u,a,T, and h_. Thus, Nyi“z'in N, ro=1 gives
h.=h_(PuaoT).

That 1s, gap trans-B-field thickness /4 1s automatically
regulated so that N, 7" N,°" 7°"'=1 is satisfied.

last-open B field line



§4 Gamma-ray vs. Spin-down Luminosities

Step 1: express NYin 7" and N ot with P, oy T, by,

OG model predicts
EII ~ = 3 hm2
Zm-LC

emitting curvature photons with characteristic energy,

hv. =§hci.
2 p.



§4 Gamma -ray vs. Spin-down Lummosztzes

—

Step 1: express N, nzin and N, outzout with P,u,a,T, h,..

An inward e or an outward e* emits
(N)" =eEl, /hv,, (N)™ =eEl/hv,

photons While running the distance [, or [;.

upper boundary
( B field line,
Q r O
|
- lo e 4 > |
neut__lion : = outer gap
star e 9 |
LC (ry:6y) :
|
\ lact-nnen




§4 Gamma-ray vs. Spin-down Luminosities

Step 1: express NYin 7" and N ot with P, oy T, by,
An inward e or an outward e* emits
(N)" =eEl, /hv,, (N)™ =eEl/hv,
photons while running the distance [, or /;.
Such photons materialize as pairs with probability
™ =LFo,/lc, ™ =LFo,/c

where F|, F, denotes the X-ray flux and o, o, the pair-
production cross section.

Quantities /,, ,, F, F,, 0y, 0, can be expressed by
P,u,a,T, and h_, if we specity the B field configuration.



§4 Gamma-ray vs. Spin-down Luminosities

—

Step 1: Both N,"7" and N,°*'7°" are expressed in terms of
P.u,a,T, and h_. Thus, Nyinfi“ N,fMrot=] gives

Step 2: Specifying the spin-down law, P=P(t, ), and the
cooling curve, T=1(t), we can solve h_=h_ (t, &).

Step 3: Independently, P=P(t, &) gives E = E (1,).

Step 4: Therefore, we can relate )
L =L (r,a)<h,E

and . .
EF=E(t o)

with intermediate parameter, pulsar age, t.



§4 Gamma-ray vs. Spin-down Luminosities

—

Step 2: Give spin-down law and NS cooling curve.

Assume dipole-radiation formula,

. 2 4
106 = 2

3 ¢

> P=P(t,)

Adopt the minimum cooling scenario (1.e., without any
direct-Urca, rapid cooling processes).

— T =T(t)



§4 Gamma-ray vs. Spin-down Luminosities

E—— S ———— ———

Step 2: Cooling curves in the minimum cooling scenario:
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§4 Gamma-ray vs. Spin-down Luminosities

Step 2: Now we can solve h_ = h_ (1).

0.8
]
]
£

Analytical
outer-gap solutions

0.6

0.4

0.2

G i i i I—l—l—l-l-l-l
10 10 10* 10
neutron star age [years]

outer-gap trans-B-field thickness, h__



§4 Gamma-ray vs. Spin-down Lummosztzes

SR

Step 1: Both NYln 7" and NPt 7o% are expressed in terms of
P.u,a,T, and h_. Thus, Nyinz'i“ N,fMrot=] gives
h.=h_(PuaoT).

Step 2: Specifying the spin-down law, P=P(t, ), and the
cooling curve, T=7{(t), we can solve h_=h_ (t, &).

Step 3: On the other hand, P=P(t, &) gives E=FE (t,o0).

Step 4: Therefore, we can relate
L =L (t,a)c h E
and

E = E(t,a)

with intermediate parameter, pulsar age, t.



§4 Gamma-ray vs. Spin-down Luminosities

SR

Step 3: We can immediately solve £ = E(t,) by the
spin-down law.

2Q4

3

E=-I1Q0Q=C(a)”
C

. Q=Q(t, )

— | E=Et.a)

C= % sin«  for magnetic-dipole spin-down

~1+sin’ar for force-free spin-down



§4 Gamma-ray vs. Spin-down Lummosztzes

SR

Step 1: Both NYln 7" and NPt 7o% are expressed in terms of
P.u,a,T, and h_. Thus, NYin 7in N,fMrot=] gives

Step 2: Specifying the spin-down law, P=P(t, ), and the
cooling curve, T=7{(t), we can solve h_=h_ (t, &).

Step 3: On the other hand, P=P(t, &) gives E=FE (t,o0).

Step 4: Therefore, we can relate
L =L (t,a)c h E
and

E = E(t,a)

with intermediate parameter, pulsar age, t.




§4 Gamma-ray vs. Spin-down Luminosities

T —]

—

Step 4: Use h_=h_ (1) to relate Ly o< hm3 E with £ = E(¢).

Analytical outer-gap solutions

IIII L] L] LI ) Illll L] L] LI IIIPI L L] L) IIIUI L] #lﬂ_—l
—_ a=45 _=>--
5 10° Toa
i years _-z"Heavy eleingnt envelope
%ﬂ ‘ f’fzi{ -
S Y ,f,” - :_*::"' = A
q}“ ~° < Ca=60' i
- J> 10” years
£ 1036 P .
.
. p— 1 1 .{_J__—ﬁ.ﬁ__...---""'7_8...-.'.-
E b L Ll :
= Light elemgnt envelope
=
RN Y. 4t ...... ks | 22
E B == a =60
£ 103 ‘ _
3 i
) l +
ﬁ L1 III:II [l [l [l IIII 1 .
z 37 38
= 10 10
a¥

Pulsar spin-down luminosity, L g (erg s‘l)



§4 Gamma-ray vs. Spin-down Luminosities

—

Numerical solution 1s consistent with the analytical one.

)
~ 0'04 o Er T
L’Y Lspin Fﬂ — E '
i 36
if Lgpin>10 g "
M
erg/s o oF
o
However, > 9 I
Ly decli = OF
Y declines N —
i o
apidy 12
if Lpin <10%°° (£ %5 R .
erg/s 3 Tkt N
o - 4 i :_:' @  Envelope Method
© B N & = 60" Heavy __ Numerical
C:J — 4 * + ,-F ! — = 60° Heavy  Analytical
= $ 47 «=-=60° Light  Numerical
o + & 1)
e ™ L I 60" Light Analytical
© = b o === 45" Light ~ Numerical
U} 1 Ill]lll L L ]Illl.l.l 1 1 lllllil 1 1 III]lII L 1 ]I]llll 1 L1

o* 10™ 410* 10 10°
KH (2013) ApJ 766, 98 spin-down luminosity (ergs s™)



§4 Gamma-ray vs. Spin-down Luminosities

—

To convert the observed flux F,into luminosity,
L=4rfyF,d? itis (conventionally) assumed f,=1.

However, we underestimate L if fo>1.

Heavy element, 1IL‘.I5 yrs

Heavy element, 11.'J4 yrs

el R
Q
R o

v 5 ; o Irll
Light element, 10 yrs /.-
10 N I

1 ol 4 s -

01902 04 06 08 1

— —
View from equator View from rotation axis

f_Q (flux correction factor)



§4 Gamma-ray vs. Spin-down Luminosities

To convert the observed flux F,into luminosity,
L=4rfoF,d? itis (conventionally) assumed fo=1.

For example, we obtain f,>3 with probability ~50%.

Heavy element, 1D5 yrs

Heavy element, 104 yrs

— —
-
R

10
Light

-
-
s -
&
dr‘
-
- = . e
- -
'—-—34-,_;--'—'
-l..__. __.«-‘
LK B

f_Q (flux correction factor)

..~ ‘ element,
-"1{1“:l yrs
01 i 1 i L i 1 i 1 i
0 0.2 0.4 0.6 0.8 1
———— ———

View from rotation axis



§4 Gamma-ray vs. Spin-down Luminosities

” Gamma-ray beaming geometry
= 103 5 _n '
s 10 Heavy element, 10" yr 1
-E; : T L T
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§5 Application to the Crab pulsar

We can apply the same numerical scheme to the Crab
pulsar.

Today, we assume

B magnetic inclination angle a=60°,
B cooling NS surface temperature k7=100eV,
(consistent with the cooling curve of a
heavy-element envelope)



§5 Application to the Crab pulsar

—

3-D OG distribution: trans-B thickness, D .,
projected on the last-open B field line surface.
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§5 Application to the Crab pulsar

Distribution of acceleration E field, E|.
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§5 Application to the Crab pulsar

viewing angle [ded]
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§5 Application to the Crab pulsar

If we cut the sky map at a specific viewing angle,
we obtain the pulse profile.
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§5 Application to the Crab pulsar

—

From X-ray observations (of the Crab nebula),
(~120° is suggested.

(b) With moderate meridional
straightening and toroidal
bending, c1:0.4, ¢ =0.2

(a) B field is approximated by
vacuum, rotating dipole,
cT:D.U, ¢ =0.0

a=60° a=60°

Viewing angle [degree]

1

Introduce artificial meridional straightening and
toroidal bending of B field (due to current):

Bé’ — (1 o Clm-/m-LC)BH,VaC
B,=(1+c,0/® .)B

@,vac



§5 Application to the Crab pulsar

Viewing angle [degree]

vy flux/phase [TeV s-! cm-2 deg-!]

Energy

Peak separation increases if B field 1s toroidally
bent and meridionally straightened moderately.
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§5 Application to the Crab pulsar

Viewing angle [degree]

Peak separation increases if B field 1s toroidally
bent and meridionally straightened moderately.

We can 1n principle discriminate B field structure |
near the LC, which has been highly unknown. o -
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§5 Application to the Crab pulsar

Schematic picture of cascading pairs and their emissions:
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§6 Lorentz invariance violation tests

- —

Finally, let us consider the Lorentz invariance violation
tests using pulsars.

Quantum gravity can be tested e.g., by measuring an
energy-dependent dispersion relation of mass-less particles.

Ex.) Photons would propagate at the speed

vB) L[ E |
C | E

oG

For n=1, for instance, two photons with different energies
E, and E, will arrive with time difference,

Af — LE —-E
c Eqq




§6 Lorentz invariance violation tests

LE -E LE -E
_ 2 1 op Eo = 2 — M
c Ey c At

At

If two photons are emitted at the same place (i.e., same L),
we can derive Eqg (or set a lower bound of E) from Ar.

Shot-time events (small A7) with large photon-energy
separation (greater E,-E,) are 1deal.



§6 Lorentz invariance violation tests
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§6 Lorentz invariance violation tests

—
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§6 Lorentz invariance violation tests
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§6 Lorentz invariance violation tests

—

For example, 1s B field ¢ or IS RERLEENS
is moderately bent £ 120 deg ;
toroidally in the ~oF SO MeV-28MeV
counter-rotation = ,TN C1=00
direction, HE and VHE ? 2 T C,=03
pulses will arrive at o b . -
different phase. 5 o B

g ol 120 deg |
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Summary

—

B High-energy pulsar observations have made rapid
progress 1n recent five years by the advent of Fermi/LAT.

B Development of pulsar emission theory 1s highly required.

BNow we can predict the HE emissions from pulsar outer
magnetospheres, by solving the set of Maxwell (divE=4mp)
and Boltzmann eqs., it we specity P, dP/dt, ¢, ., kTys-

BThe solution coincidentally corresponds to a quantitative
extension of classical outer gap model. However, we no
longer have to assume the gap geometry, E,, e* distribution
functions. . 0-04

By-ray luminosity evolves as L, o< £ when E > 10 erg s,
which 1s consistent with Fermi/LLAT observations.

B Crab pulsar’s phase-resolved spectrum can be explained
by the current outer-magnetospheric accelerator theory.

1
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Thank you.



