

Latest results of the IceCube experiment

- Especially the extremely high energy cosmogenic neutrino search

Cosmic rays

- Firstly detected by V. F. Hess in 1912
- Wide energy spectrum (10⁹⁻²¹ eV). (1eV: ~visible light)
- Believed to be accelerated in a shock of a source
- The origin not fully understood yet!

Energies and rates of the cosmic-ray particles

V. F. Hess

Tycho

But, where?

Where are cosmic rays generated?

→ we don't know yet

(We know where electrons are accelerated)

 \rightarrow Neutrinos can tag it.

Note: in case of a photo-pion production, roughly same energy amount goes to neutrinos and gammas

$$p + \gamma \rightarrow n + \pi^{+} \rightarrow n + \mu + \nu_{\mu}$$
$$\rightarrow n + e + \nu_{e} + 2\nu_{\mu}$$
$$p + \gamma \rightarrow p + \pi^{0}$$
$$\rightarrow p + 2\gamma$$

Even more if we consider gamma-ray absorption.

120.200 120.100 120.000 Galactic longitude

Neutrinos should be there

The source of cosmic rays are the neutrino source

 $p\gamma \rightarrow n\pi^+ \rightarrow \mu\nu_\mu$

Waxman-Bahcall limit

E. Waxman and J. Bahcall, PRD, 59, 023002 (1998) Limit from observed CR (optically thin assumed)

$$E_{\nu}^{2}\Phi_{\nu_{\mu}} = \frac{\varepsilon}{8}\xi_{Z}t_{H}\frac{c}{4\pi}E_{CR}^{2}\frac{d\dot{N}_{CR}}{dE_{CR}}$$

ε: fraction of energy going to neutrinos ξ_z : cosmological evolution (order unity)

If $\varepsilon = 1$, WB limit $E_{\nu}^{2} \Phi_{\nu_{\mu}} \approx 2 \times 10^{-8} \ GeV \ cm^{-2} s^{-1} sr^{-1}$

The sensitivity of 1 km³ size detector is lower than WB limit.

The physics of IceCube

Want to open the neutrino astronomy

The IceCube experiment

- ♦ Deployed in the Antarctica glacier
- In-ice + IceTop + deep core
- ♦ 86 strings (completed 2010!)
- Detector volume: ~ 1 km³
- ♦ ATWD 300MSPS
 - 3 different gains (x16, x2, x0.25)
- ♦ FADC for long duration pulse
- Targets for cosmic high energy neutrinos
 (>~ 100 GeV)

PMT

The IceCube Collaboration

Univ. Libre de Bruxelles, Belgium Vrije Univ. Brussel, Belgium Univ. de Mons-Hainaut, Belgium Univ. of Gent, Belgium Univ., Mainz, Germany **DESY-Zeuthen**, Germany Univ. Wuppertal, Germany **RWTH Aachen Univ.**, Germany Humboldt Univ. zu Berlin, Germany

1#

::

1 (

Univ. Bonn, Germany Ruhr-Univ. Bochum, Germany Univ. Dortmund, Germany **MPI Heidelberg, Germany** Uppsala Universitet, Sweden Stockholm universitet, Sweden University of Oxford, UK Ècole Polytechnique Fèdèrale, Switzerland Univ. of Alabama, USA Clark-Atlanta University, USA Univ. of Maryland, USA University of Kansas, USA Southern Univ. and A&M College, USA Univ. of Alaska Anchorage, USA Georgia Tech, USA Ohio State Univ., USA

Chiba Univ., Japan

Univ. Of West Indies, Barbados

Univ. of Canterbury, New Zealand

The detection principle

A large volume
 transparent medium
 Antarctica glacier

neutrino

Particle types

NC interactions also make cascades

The extremely high energy (EHE) cosmogenic neutrinos (> 10⁸ GeV)

 \rightarrow detectable with IceCube

10

Effect of source evolution and maximum energy on neutrino flux

The detection principle

♦ EHE neutrino signal (all flavor)

 \diamond horizontal (opaque to the earth)

 \diamond high energy (> 10⁸ GeV)

Atmospheric muon background

 \diamond down-going

 \diamond low energy (the energy spectrum is steep (~E^{-3.7}))

Yoshida et al PRD 69 103004 (2004)

The spectrum of backgrounds

 $\frac{dN}{dE} \propto \frac{dN_{CR}}{dE} \frac{A}{1 + B\cos\theta} \frac{E}{E}$ θ : zenith angle, ϵ : critical energy \diamond atmospheric μ $\frac{dN_{\mu}}{dE} \propto E^{-3.7} (> \varepsilon_{\pi} = 115 \, GeV)$ $\frac{dN_{\mu}}{dE} \approx 10^6 \frac{dN_{\nu}}{dE}$ \diamond atmospheric v $\frac{dN_{\nu}}{dE} \propto E^{-3.7} (> \varepsilon_{\pi} = 115 \, GeV)$ ♦ prompt v

♦ decay from charmed particles $\frac{dN}{dE} \propto E^{-2.7} \ (< \varepsilon_{charm} = 10 PeV)$

Datasets

Five datasets are used in this analysis:

- Observational data taken in 2010-2011 (319.2 days) taken in 2011-2012 (350.9 days)
 EHE level2a data (NPE > 1000)
 ~3.0 M events, ~ 0.9-1.3 Hz (2010-2011)
- Signal MC data (JULIET) 10⁵-10¹¹ GeV, E⁻¹ 20k events for μ, τ, v_e, v_μ, v_τ
- 3. Atmospheric muon background MC data (CORSIKA data)

10⁵-10¹¹ GeV, E⁻¹, takes long time... 15k events for proton and iron SIBYLL HE interaction model

- 4. Coincidence muon MC data (CORSIKA data) 600-10¹¹ GeV, E^{-1.7}, polygonate model (J. R. Hoerandel, 2003) 10G events (10000 files) SIBYLL HE interaction model
- 5. Atmospheric neutrino background MC data

 10^{3} - 10^{9} GeV, E⁻¹, v_µ, v_e 10M events (2000 files) Honda flux (2007) + knee correction (Gaisser)

IC79 (2010-2011)

How to determine the energy

Detected total number of photoelectrons (NPE) \propto Energy

NPE is a good energy estimator!

Analysis scheme

Offline filter: select high energy events and fundamental cleaning

NPE > 10^{3.5} NDOM > 300 coincidence cleaning

Final filter:

precise geometry reconstruction remove remained coincidence events

Offline filter level

NPE > $10^{3.5}$ & NDOM > 300 & Coincidence cleaning

Final filter level

with precise reconstruction algorithms && further coincidence cleaning

33.4 days	Obs. data	GZK signal	proton	iron	Coin.	Atm. nu
all	(5.22±0.02)x10 ⁴	0.170±0.001	(2.53±0.51)x10 ⁴	(9.10±0.52)x10 ⁴	(8.72±0.08)x10 ³	0.769±0.032
Below horizon	0±0	0.0459±0.0004	(2.25±0.94)x10 ⁻⁴	(1.61±0.80)x10 ⁻³	(2.35±1.63)x10 ⁻³	0.383±0.017

mis-reconstructd events are cleaned

 atmospheric neutrinos also come from horizon, but low energy

□ Final selection criteria

Model discovery potential method used (4 sigma) Iron + coin. + atm. nu is used for the background to be conservative

* 0.57 per 333 days for IC40

□ The total exposure (IC79 + IC86)

2010-2011 (319.2 days) 2011-2012 (350.9 days) both effective areas are similar

The August event

Aug., 9th, 2011 Run118545 -Event63733662 NPE: 7.0 x 10⁴ NDOM: 354

IceTop (surface array) veto information

- IceTop veto information was checked
- ♦ hits search in allowed 8µs time window
- ♦ 0 and 1 hit observed again2.1 hits expected
- -> No CR shower

by J. Auffenberg

□ The NPE distribution

model	event rate in 670.1 days
GZK Yoshida and Teshima	2.1
GZK Kotera et al. (FRII)	4.1
GZK Ahlers et al. (maximal)	3.2
GZK Ahlers et al. (best fit with Fermi)	1.6
E²φ	11.7
prompt	0.13
total BG	0.057
observed	2

by A. Ishihara

Two events passed the selection criteria

2 events / 672.7 days - background (atm. μ + conventional atm. ν) expectation 0.14 events preliminary p-value: 0.0094 (2.36 σ)

by S. Yoshida

□ The model test with null hypothesis

assumes two events are from other sources

estimated the effect of the two events by the energy PDF

IC40+IC79+IC86

model	expected rate (>100 PeV)	p-value
GZK Yoshida Teshima, m=4, Zmax=4	2.6	9.6x10 ⁻²
GZK Sigl, m=5, Zmax =3	4.0	2.4x10 ⁻²
GZK Yoshida Ishihara, m=5, Zmax=2	2.8	7.4x10 ⁻²
GZK Ahrlers, Fermi best	2.0	16.2x10 ⁻²
GZK Ahrlers, Fermi max	4.1	2.3x10 ⁻²
GZK Kotera, SFR	0.60	67x10 ⁻²
GZK, Kotera, GRB	0.63	66x10 ⁻²
GZK, Kotera, FRII	3.8	3.1x10 ⁻²
Top-down SUSY	21	<0.1x10 ⁻²
Top-down GUT	5.0	<0.1x10 ⁻²

Preliminary

high evolution models (m>4) are ruled out

by S. Yoshida ³⁰

The model independent upper limit

similar as previous, but model independent

Energy calibration by the standard candles (SCs)

□ Agreement between data and MC

□ MC vs Data comparison

Error budget

	BG	signal
Stat. error	± 9.3%	± 0.6%
NPE shift	-	+2.9 - <mark>6.8</mark> %
Yearly variation	± 17 %	-
Neutrino cross section	-	± 9%
Photo-nuclear int.	-	+ 10%
LPM effect	-	± 1%
Hadronic int. model	+36.9%	-
total	± 9.3(stat.) ± 40.7(sys.) %	± 0.6 (stat.) +13.8 -11.3 (sys.) %

Next plan - Askaryan Radio Array (ARA)

(*) Yoshida et al., ApJ, 1997, m=4, Z_{max}=4

Summary

IceCube is aim for detecting neutrinos from astronomical origins to shed light on the cosmic ray origin

- The IceCube detector completed in 2010
- The sensitivity is below Waxman-Bahcall limit
- Two cascade like events found

Significance of cosmogenic neutrino hypothesis is 2.95 sigma without taking prompt contribution into account

- High evolution GZK models are ruled out
- Larger detector (ARA) is coming

backups

The history

2004: project started 2006-2007: IC9 2007-2008: IC22 2008-2009: IC40 2009-2010: IC59 2010-2011: IC79 2011: IceCube completed! 2011~: IC86

IC86 = full IceCube (2011~)

IC59 (2009-2010)

X [m]

IC79 (2010-2011)

The Digital Optical Module (DOM)

HV Base

Calibrated at Chiba University

(hemi)sphere

Coincident event cleaning

- ✓ Geometrical and time constraint is used to separate coincident events
- ✓ Useful to clean coincident events

Better reconstruction for corner clippers

SPE12: uses only the arrival time of the first photon in optical modules to construct likelihood

red: Pandel function (model), black: simulation data

- ✓ Linefit mis-reconstructs corner clippers
- ✓ Likelihood-base reconstruction reconstructs corner clippers better

The ice property

λ_{scat} ~ 20 m @ 400 nm

 \rightarrow taken into account in simulation

Chiba-IIHE collaboration

GPS/Rubidium Clock

- Timing precision for ARA stations using GPS and Rubidium clocks
 - GPS for synchronization between stations: aim for 2ns precision
 - Rubidium clock for station internal timing stability: aim for ~100ps precision
- Challenge: Find devices with adequate performance but lowest power consumption

Chiba-IIHE collaboration

Wireless data transmission

- Array spread with an radius of ~6 km
- Try to avoid cables → Wireless data transmission over 6km
- Main test-sites: Kujukurihama, South Pole

Antenna distance

GZK1 and 2: S. Yoshida et al. (1997) [1], m=4, Z_{max} =4, γ =2, E_{max} =10 ZeV and m=4, Zmax=5, γ =1.5, E_{max} =10 ZeV,

GZK3 and GZK4: Kotera et al. (2010), SFRI and FRII with γ =2.5, E_{max}=316 EeV,

GZK 5 and 6: M. Ahlers et al. (2010), E_{min} =10 EeV, E_{max} =1 ZeV best fit with Fermi, m=4.6, Z_{max} =2, γ =2.5 and m=4.4, Z_{max} =2, γ =2.1 (max)