CTA報告224: CTA大口径望遠鏡のための SiPMモジュールの開発(3) ^{糸川拓海^A}

阿部和樹^B、猪目祐介^A、大岡秀行^A、岡知彦^A、奥村暁^{C,D}、折戸玲子^E、 片桐秀明^F、櫛田淳子^B、窪秀利^A、郡司修一^G、小林志鳳^{H,A}、齋藤隆之^A、 櫻井駿介^A、高橋光成^C、田島宏康^C、立石大^I、田中真伸^J、手嶋政廣^{A,L}、 寺内健太^K、寺田幸功^I、門叶冬樹^G、中森健之^G、西嶋恭司^B、野崎誠也^{A,L}、 野田浩司^{H,A}、橋山和明^A、Daniela Hadasch^A、Daniel Mazin^{A,L}、 溝手雅也^M、山本常夏^M、吉田龍生^F、

他CTA-Japan Consortium

<u>•東大宇宙線研</u>、[®]東海大理、^C名大ISEE、^D名大KMI、^E徳島大理工、 「茨城大理、^G山形大理、^H千葉大理、^I埼玉大理、^JKEK素核研、^K京大理、 ^Lマックスプランク物理、^M甲南大理工

■CTA大口径望遠鏡(LST)のカメラ

チェレンコフ光に背景光が 混入した信号のイメージ LSTのカメラの役割 チェレンコフ光 ✓ 大気シャワーによって生じたチェレンコフ光を捉える (数nsの信号幅) ✓ 数nsで到来するチェレンコフ光と 夜光(背景光) 数百MHzで到来する夜光を弁別する (数百MHzで混入) ✓ シャワーのイメージからガンマ線のエネルギーと 到来方向を推定する ↑茨城大:服部勇大氏、天文学会スライドより抜粋 ✓現行のPMTカメラ ▶ 1855 PMTs (7 PMTs×265モジュール) カメラ > QE~40% LST \succ FWHM \sim 3 ns ▶ ゲイン~4×10⁴ ▶ 動作電圧=1,000 ~ 1,400 V ▶ 電荷分解能~0.47 p.e. Credit : T.Saito Credit : G. Pérez

■SiPMカメラによるLSTの高性能化

■SiPMをLSTに採用する際の問題点

ライトガイド

赤色光をカットする研究もなされている

500

600

Wavelength [nm]

700

800

900

■SiPM:S13361-2196(浜松ホトニクス製)の基礎特性測定

セルサイズ:75µm ピクセル数/ch:6,336

- ✓ 波形:時定数~110 ns (次のスライド)
- ✓ ゲイン~4×10⁶ @V_{ov}~3 V, 11 °C

測定結果

- ✓ Dark count rate(DCR)~8×10⁵ Hz
 @ V_{ov}~3 V, 22 °C
- ✓ OCT確率~20% @ V_{ov}~3 V , 13 ℃ (保護樹脂有り)
- ✔ 降伏電圧~52.2 V @20 °C

- SiPMアレイの構成
 - ✓ 先行研究[1]:4×4→本研究:2×2

共通光源:FWHM~80ps

波形の違い

[1]橋山修論(東京大学、2021): SiPM型番S14521-0741-2, [2]岩崎修論 (京都大学、2022): S13360-3075CN-UV

■4ch信号合成回路

• 有効面積が小さい

✓LSTに採用する際、4chを合成して1ピクセルにする

- MEG実験を参考にした信号合成
 - ✓ 直流成分にとっては並列接続なので キャパシタンスが4倍
 ✓ 交流成分にとっては直列接続なので キャパシタンスが1/4倍
 - →信号の時定数が短縮される 7

■4ch信号合成回路による信号幅短縮

■Pole Zero Cancellation 回路:先行研究

■PZC回路のパラメータ探索:セットアップ

- FWHM~3ns、低減衰を達成するために、回路シミュレーション(LTspice)でベストな回路パラメータを探索
 - ✓ 先行研究:実験ベースでのパラメータ決定→FWHM~2 nsを達成
 本研究:シミュレーションベースでパラメータの組み合わせを検討
 - ✓ R₂はLSTの読み出し回路の入力インピーダンス50Ωに固定
 - R₁・Cの組み合わせをシミュレーションで検討

■シミュレーション結果

■アンダーシュート・オーバーシュート評価

■PZC回路の動作確認

- ・シミュレーションと実験結果の比較で動作検証
 ✓ FWHM:実験値 2.82 ns, シミュレーション 2.65 ns
- ・ 先行研究[1]との減衰率の比較
 - ✓ PZC回路での減衰率~約42%
 - →先行研究[1]に比べて振幅の減衰を約3.2倍改善

13

Summary

結果

 ✓ SiPMを直列に繋いだ4ch信号合成回路によって、 fast成分が顕著になり、

slow成分の減衰時定数が約1/2に短縮

✓シミュレーションベースのPZC回路開発によって、 SiPM信号に最適な回路パラメータを効率的に検証

▶ FWHM~2.8 nsを実現・信号の減衰を約3.2倍改善

• 今後の展望

✓温度補償回路の試作回路は製作済みで、
 実測したゲイン温度係数に合わせて調整する
 ✓LST初号機への試験搭載

