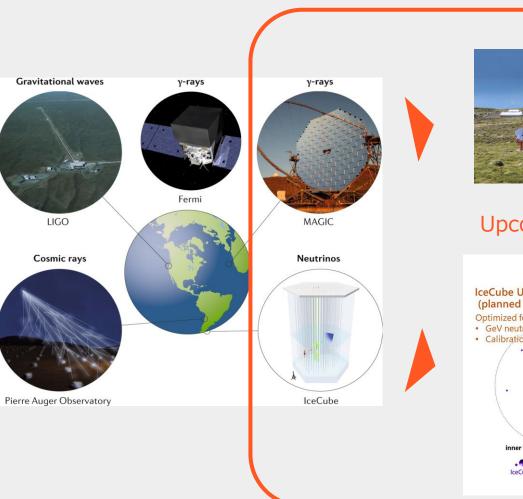


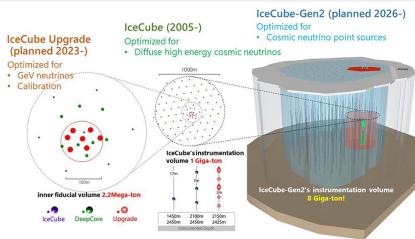
寺内 健太


Gamma-ray Burst (GRB)

- Extremely energetic emission from relativistic jet
- Isotropic gamma-ray energy: typically, $E_{iso} > 10^{52}$ erg
- Prompt: series of short pulses
- Afterglow: power-law decay with duration of days to weeks

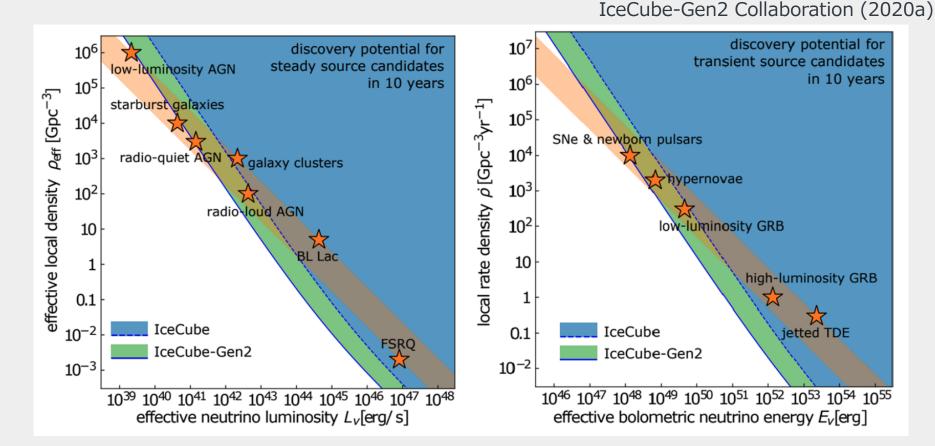
MAGIC Collaboration (2019)

Multi-messenger Observation

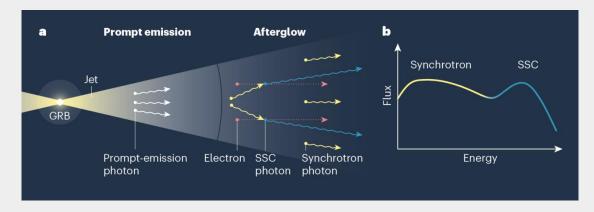


This talk's content

CTA North



Upcoming next generation instrument


Origin of Neutrino Diffuse Flux

Low-Luminosity GRB (LLGRB): GRBs with isotropic energy $E_{iso} < 10^{50}$ erg

IceCube-Gen2 measurement can distinguish whether LLGRB is the origin of IceCube diffuse neutrino flux

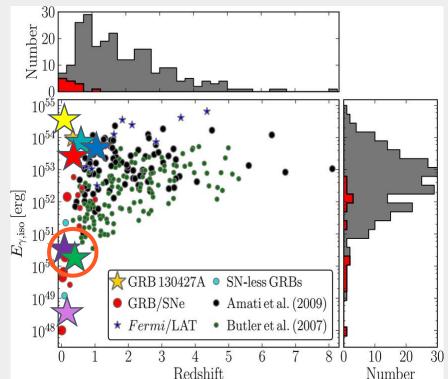
Insights from VHE Observation

- Inverse Compton radiation gives us info on:
 - Energy release in VHE range that we have overlooked
 - (Amplified) Magnetic field
- Together with multi-wavelength data, one can obtain more accurate kinetic jet energy of initial afterglow phase Ek
- Combined with prompt energy release, one can derive more accurate radiation efficiency of prompt emission
 - Essential to investigate the prompt emission mechanism
 - Relates to total proton energy after internal shock dissipation

Less Luminous VHE GRBs

So far ground-based telescopes have (marginally) detected two faint GRBs (on the boundary between GRB and LLGRB)

★ GRB190829A (z = 0.078)


★GRB190829A

- $E_{iso} = 1.8 \times 10^{50} \text{ erg}$
- Redshift z = 0.078
- H.E.S.S. detected VHE emission
- Very low radiation efficiency of prompt emission (0.12 %) cf.) Salafia et al. (2022)

★GRB201015A

- $E_{iso} = 1.1 \times 10^{50} \text{ erg}$
- Redshift z = 0.426
- MAGIC observed and reported a hint of signal
- MAGIC paper in prep. (K. Terauchi)

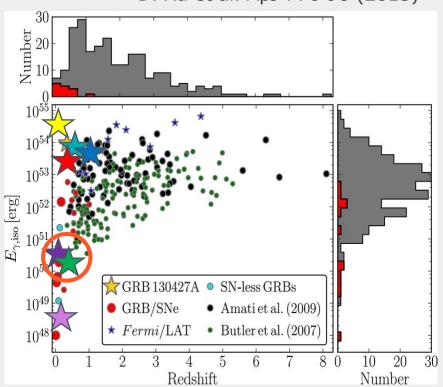
D. Xu et al. ApJ 776 98 (2013)

★ GRB180720B (z = 0.65) ★ GRB190114C (z = 0.42) ★ GRB201216C (z = 1.1) ★ GRB221009A (z = 0.15) \star GRB160821B (z = 0.16; short)

Less Luminous VHE GRBs

So far ground-based telescopes have (marginally) detected two faint GRBs (on the boundary between GRB and LLGRB)

★GRB190829A

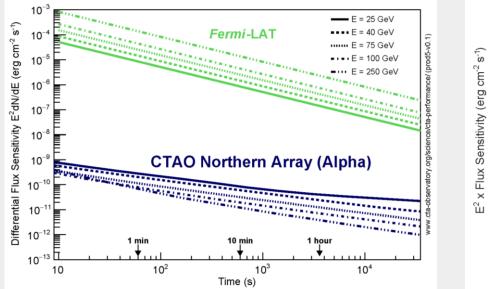

- $E_{iso} = 1.8 \times 10^{50} \text{ erg}$
- Redshift z = 0.078
- H.E.S.S. detected VHE emission
- Very low radiation efficiency of prompt emission (0.12 %) cf.) Salafia et al. (2022)

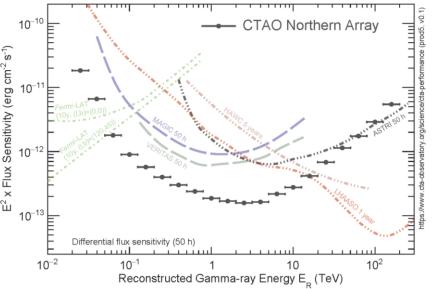
★GRB201015A

- $E_{iso} = 1.1 \times 10^{50} \text{ erg}$
- Redshift z = 0.426
- MAGIC observed and reported a hint of signal
- MAGIC paper in prep. (K. Terauchi)

Further VHE observation will reveal the properties of LLGRB which are still largely unknown

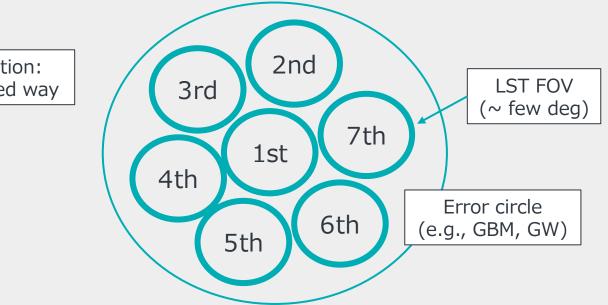
D. Xu et al. ApJ 776 98 (2013)




7

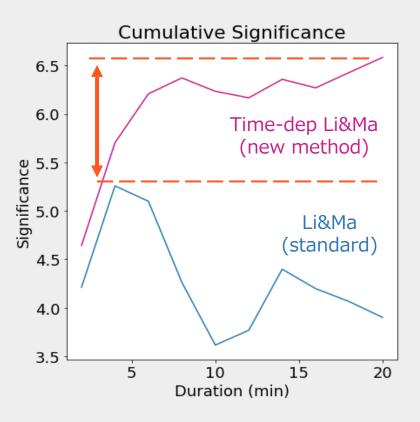
Future Prospect: CTA North/LST

- >10⁴ times better integral sensitivity than Fermi-LAT in few tens of GeV
 - Suitable for GRB follow-up
- Best sensitivity in VHE range
 - Suitable for observing LLGRB which faint signal is typically expected
 - Low energy (tens of GeV) sensitivity is essential to avoid EBL absorption



Alert Follow-up Strategy: Tiling Observation

- Position error of Fermi-GBM and gravitational wave (GW) alerts are often large
 - 5 15 deg (GBM position notice), 3.2 32 deg (GW, O3)
- Some approach is necessary to increase the number of GRB detection
 - "Tiling" observation is one of the ways to tackle this problem
- Real time analysis is essential for the alert follow-up
 - Currently under development



Tiling observation: Observe in a tiled way

New Detection Method

- New method for calculating detection significances
 - Use likelihood ratio test
- Take into account the temporal information of gamma-ray events
 - Assume signal from a source is decaying in power-law
 - Use a priori info of GRBs (especially the ones detected in VHE)
- Will be implemented in real time analysis in the future

K. Terauchi (JPS Meeting 2023 Spring)

 $5.25 \sigma \rightarrow 6.58 \sigma$ (Sensitivity improvement of about 25 %)

Summary

- Low Luminosity GRB (LLGRB) is a subclass of GRB with small isotropic energy ($E_{iso} < 10^{50}$ erg)
- LLGRB is a good target for multi-messenger astronomy
 - Future observation by IceCube (Gen2) will help us determine whether LLGRB is the origin of neutrino diffuse flux
 - Future VHE gamma-ray observation by CTA (especially LST) will provide us info (e.g. radiation efficiency) on LLGRB
- Several strategies for future VHE observation of (LL)GRBs
 - Tiling observation for the alerts with large position uncertainty
 - New technique for calculating detection significance of gamma-ray signal