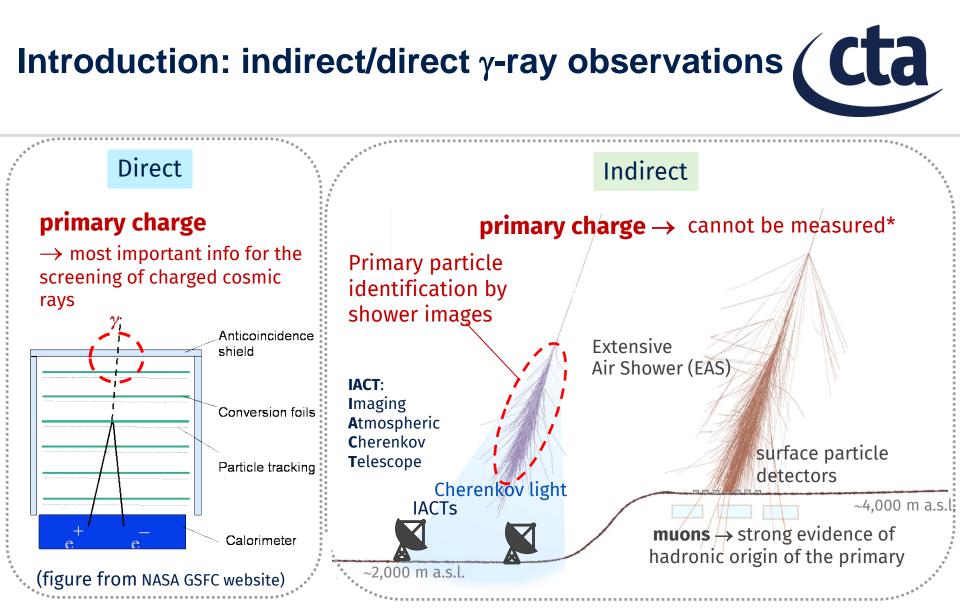


cherenkov telescope array

CTA 報告 187: ハドロン相互作用モデルとCTA

<u>M. Ohishi¹</u>, L. Arbeletche², V. de Souza², G. Maier³, K. Bernlöhr⁴, A. Moralejo⁵, J. Bregeon⁶, L. Arrabito⁶, T. Yoshikoshi¹


¹ICRR, the Univ. of Tokyo, ²IFSC, Univ. of Saõ Paulo, ³DESY, ⁴MPIK, ⁵IFAE, The Barcelona Inst. of Sci. & Tech., ⁶LUPM, Univ. of Montpellier

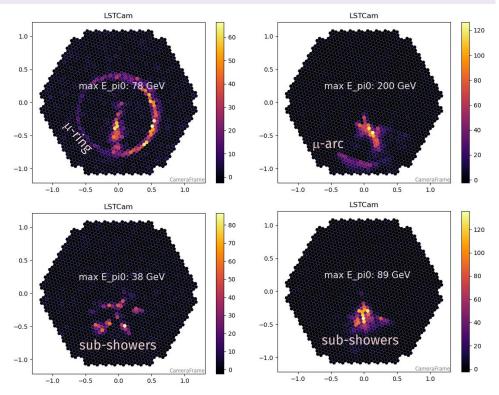
Contents of this talk based on Ohishi M et al., J. Phys. G: Nucl. Part. Phys. 48 075201 (2021)

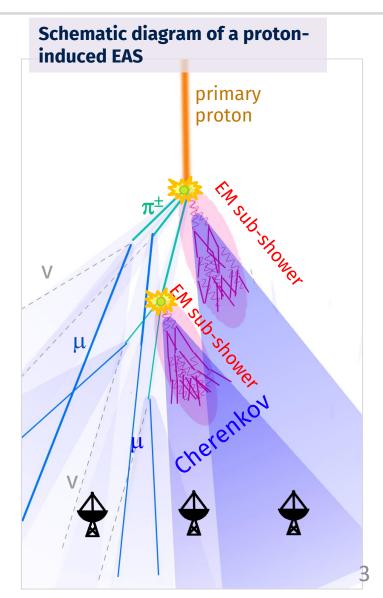
Outline

- Introduction
- Simulation without detector response
 - $-\pi^0$ spectrum
- Simulation with detector response (CTA prod3b, baseline configuration)
 - Reconstructed energy
 - Basic shower parameters
 - Multivariate Analysis (MVA) parameter
 - γ -ray sensitivity
- Possibility of the interaction model verification with CTA
- Conclusion

✓ Particle identification (γ or not) is more difficult in indirect observations → higher background level due to charged cosmic rays

* Except for IACT observations of heavy nuclei in limited situations

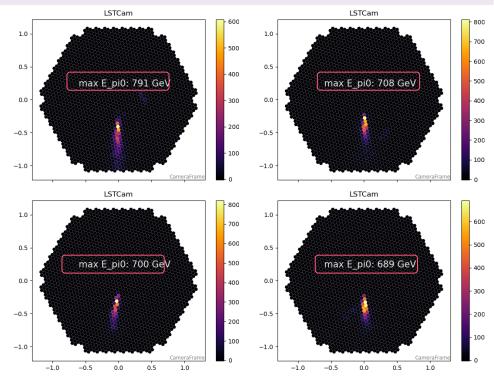

Proton-induced shower images in IACTs

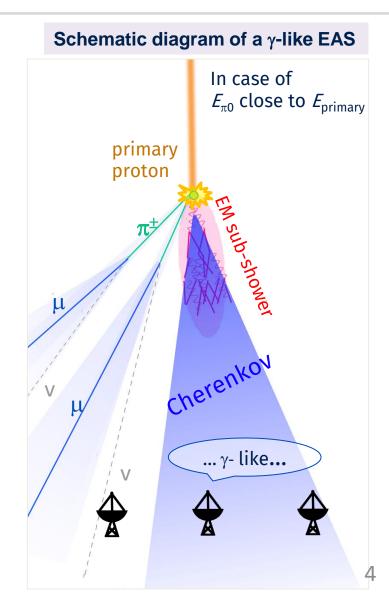


- EASs from cosmic-ray protons : sub-structures
 - EM sub-showers from π^0
 - **Muons** from π^{\pm}
- Wide variation in observed images

Cherenkov Image samples for 1 TeV proton

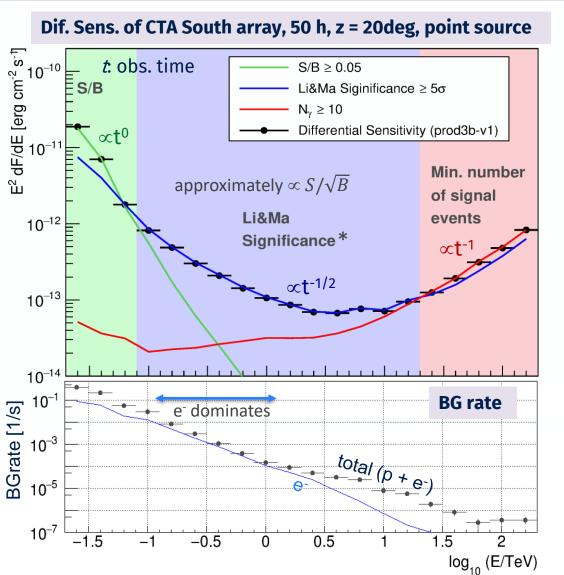
z : 0 deg, Impact Parameter : 120 m, first interaction height : 20km, target nucleus: Nitrogen (all fixed)


Proton-induced shower images in IACTs



- Previous studies on nature of γ-like proton events: Maier+ (2007), Sitarek+ (2018), Sobczyńska (2008, 2015) etc.
- Emission of **energetic** $\pi^0 \rightarrow \gamma$ -like shower
- Rate of γ -like events depends on π^0 spectrum

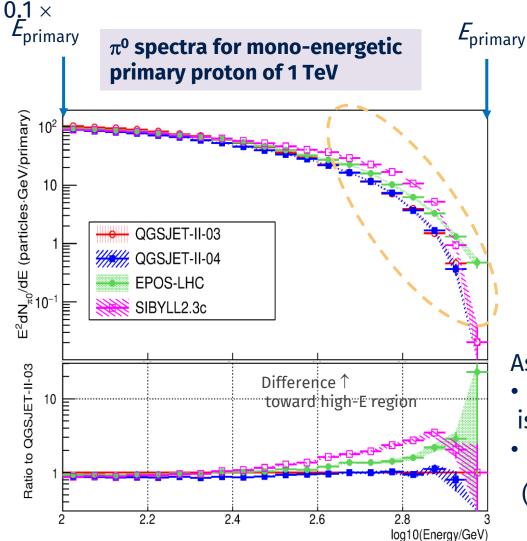
High max $E_{\pi 0}$ image samples for 1 TeV proton


z : 0 deg, Impact Parameter : 120 m, first interaction height : 20km, target nucleus: Nitrogen (all fixed)

γ -ray sensitivity (CTA case)

- At the trigger level, γ-ray events account for only <1 % (even for bright sources)
- Background ≈ misidentified cosmic-ray protons and electrons
- Efficiency of BG rejection in the analysis affects the sensitivity
- Event selection is optimized considering a balance of BG rejection and signal loss

 * Li &Ma (1983) Eq. (17) with α = 0.2, for CTA case


Monte Carlo Simulations

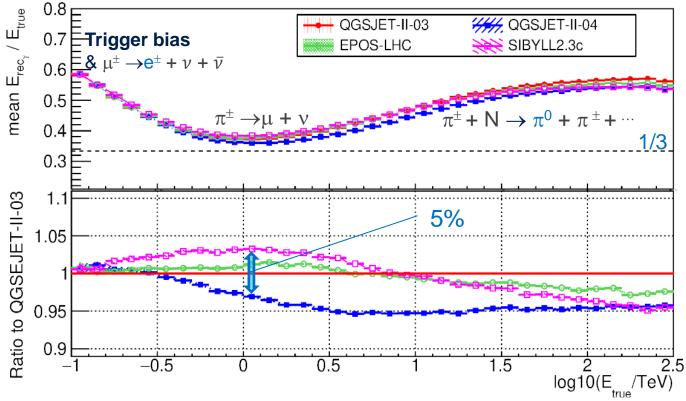
- <u>Tested hadronic interaction models</u>
 - QGSJET-II-03 (pre-LHC) in CORSIKA 6.99
 - QGSJET-II-04, SIBYLIL2.3c, EPOS-LHC (post-LHC) in CORSIKA 7.69
- <u>Simulation w/o detector response</u>
 - π^0 spectra, energy fraction consumed in EM components
- <u>Simulation w/ detector (CTA) response</u>
 - prod3b baseline configuration ("Omega configuration"), South site array
- Current public CTA performance plot: "Alpha configuration" is used as the first construction phase
- Reconstructed energy, collection area, basic shower parameters, MVA parameter, γ-ray sensitivity

Simulation w/o det. response: π^0 spectrum

- π^{0} spectrum at the high energy edge affects γ -**like** event rate
- Tested models **show different** features
- Harder spectrum → **higher BG rate** is expected

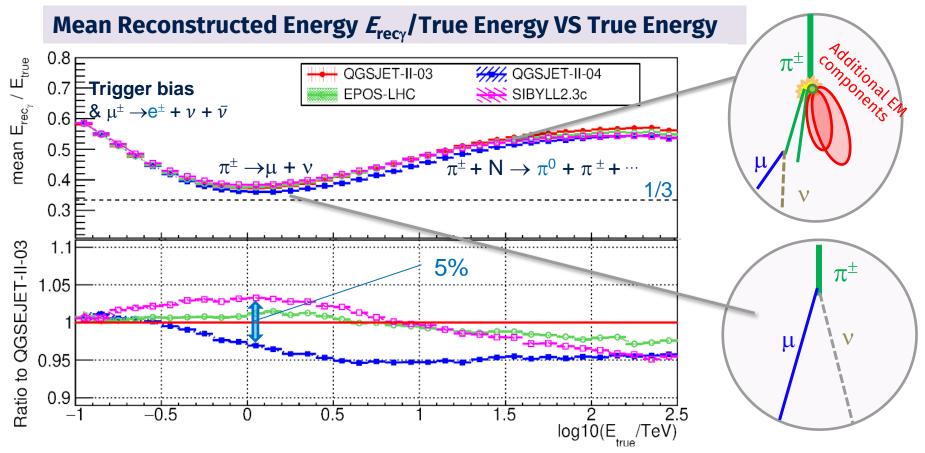
EPOS-LHC \rightarrow **SIBYLL2.3c** \rightarrow QGSJET-II-03 \approx QGSJET-II-04

As for γ -like event rate, effect of


- different model characteristics is stronger than
- parameter tuning by LHC data

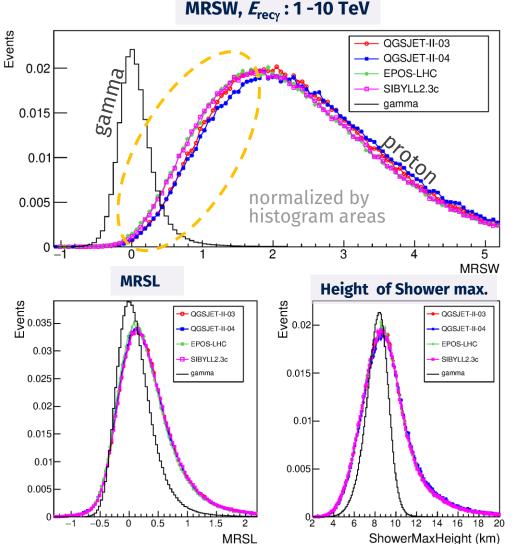
(since QGSJET-II-03 \approx QGSJET-II-04)

Simulation w/ detector response: Reconstructed energy


Mean Reconstructed Energy *E*_{recy}/True Energy VS True Energy

- Proton events,
 before γ-like event selection
- $E_{rec\gamma}$ is estimated assuming all the events are γ -rays
- Mean $E_{rec\gamma}$ approaches to 1/3 (= energy consumed in π^0) in moderately low-E region
- In mean E_{recy} , a difference of 5-7 % between models is seen
- Difference in $E_{rec\gamma}$ propagates to a difference of 8-12% in proton shower rate at a certain $E_{rec\gamma}$, assuming spectral index of -2.62

Simulation w/ detector response: Reconstructed energy



In mean *E*_{recy}, a difference of 5-7 % between models is seen

• Difference in $E_{rec\gamma}$ propagates to a difference of 8-12% in proton shower rate at a certain $E_{rec\gamma}$, assuming spectral index of -2.62

Basic shower parameters

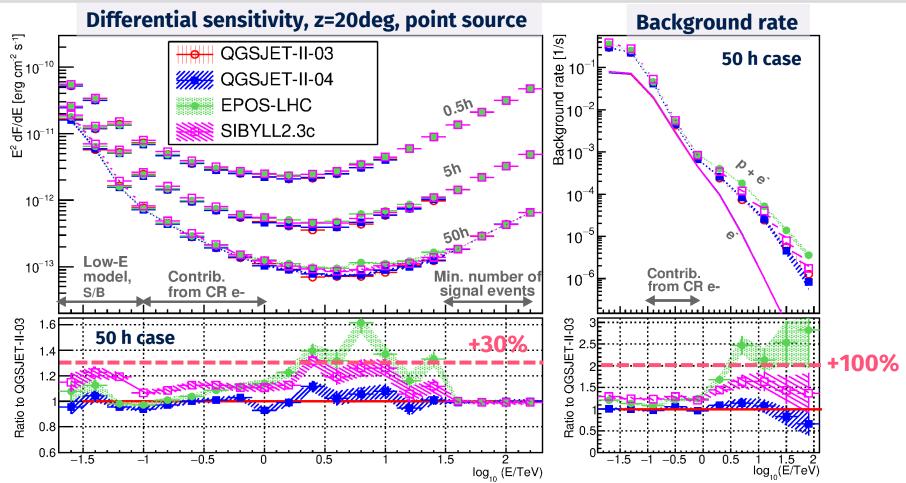
Width : lateral size of an EAS Length : longitudinal size of an EAS

MRSW/L: Mean Reduced Scaled Width/Length (Aharonian+ 2006)

E> 1 TeV : lateral size is the most important for γ/h separation

- **EPOS-LHC** & **SIBYLL2.3c** have more events in *γ*-like regions
- QGSJET-II-03 ≈ QGSJET-II-04 in γ-like region, but they are different in large MRSW (proton-like) region

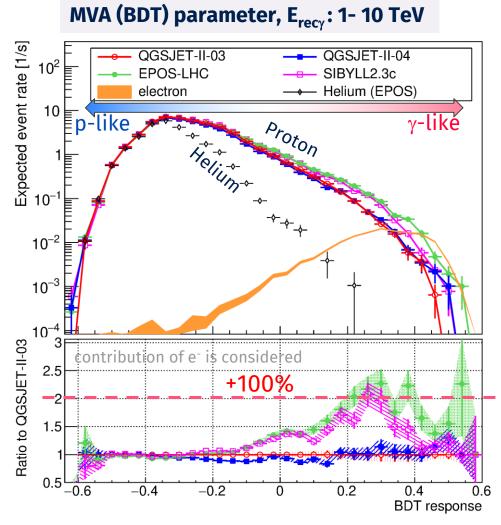
Multivariate analysis (MVA) parameters


- A single index for γ /h separation •
- Boosted Decision Tree (BDT) in this work with 11 input parameters
- EPOS-LHC and SIBYLL2.3c show higher residual BG rate than the two QGSJET-II models at a same signal acceptance

BDT distribution, $0 \le \log_{10}(E_{rec}/TeV) \le 0.75$ Background (proton) acceptance Entries (arbitrary unit) 01 _____ QGSJET-II-03 QGSJET-II-04 QGSJET-II-03 QGSJET-II-04 EPOS-LHC SIBYLL2.3c EPOS-LHC SIBYLL2.3c High BG proton dam 10 10 normalized Low BG 10^{-5} bv areas 10^{-1} -0.4 10^{-6} -0.6 -0.20.2 0.6 0.4 0 0.2 0.8 0.4 0.6 **BDT** response Signal (gamma) acceptance

BG acceptance VS signal acceptance

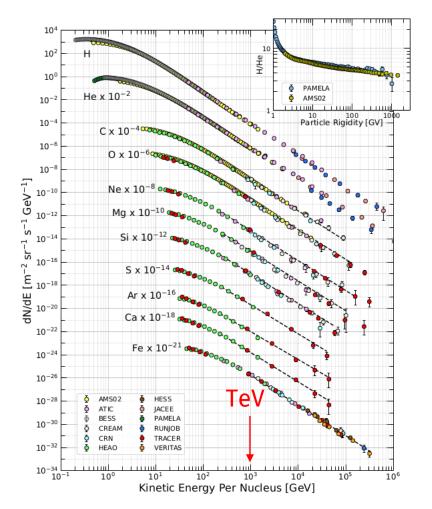
γ -ray sensitivity (prod3b, South site array)



• Differences of factor 2 (+100%) in BG rate, ~30% in γ-ray sensitivity between models

• Relation between models and its energy dependence is consistent with the expectations from simulations without detector response

Possibility of the interaction model verification with CTA



An identical BDT (trained with QGSJET-II-03 proton and $\gamma)$ is used to evaluate BDT response

- CTA → expected to have a significant capability of model verification with various observables:
 - cosmic ray rate
 - shower shape parameters
 - muon numbers
 - γ -like event rate etc.
- Merit of using γ**-like event rate**:
 - Difference between models becomes large (due to π⁰ spectral feature)
 - Verification with almost **pure proton** (among CR nuclei) is
 possible
- No dedicated observation data is needed

Possibility of the interaction model verification with CTA

One of the problems in the verification of interaction models with air shower experiments:

Composition?

Interaction?

e.g. muon production depends on both of primary nuclei type and hadronic interaction.....

- Recent direct measurements at veryhigh energy limit uncertainty in cosmic ray composition
- Feedback from the current IACTs on the interaction model verification is encouraged!

(VERITAS, H.E.S.S., MAGIC....)

Zyla et al. (Particle Data Group, 2020)

- Effect of the uncertainty in the hadronic interaction models on the estimation of the γ -ray sensitivity of CTA was investigated
- Regarding the South site array of prod3b baseline configuration, differences of
 - factor 2 in background rate
 - ~30% in differential γ-ray sensitivity (in 1 30 TeV)
 are seen between the tested four interaction models
 (QGSJET-II-03, QGSJET-II-04, EPOS-LHC, SIBYLL2.3c)
- These results are consistent with the features of the secondary particles in EASs, especially π^0 spectrum
- CTA will have a significant capability for verification of interaction models, without requiring any dedicated observation time
- Feedback from current IACTs is also encouraged!

For more detail, see: Ohishi M *et al., J. Phys. G: Nucl. Part. Phys.* **48** 075201 (2021)