CTA報告171:小口径望遠鏡用 SiPMの光検出効率の入射角度依存性

奥村 曉 1,2

黒田裕介¹、古田和浩¹、田島宏康¹、他 CTA Consortium

¹名古屋大学宇宙地球環境研究所(ISEE)

²名古屋大学素粒子宇宙起源研究所(KMI)

2020年9月15日@日本物理学会2020年秋季大会

Kobayashi-Maskawa Institute for the Origin of Particles and the Universe

oxon@mac.com

Cosmic-ray Hadron Spectrum

- ~10⁸ eV (~100 MeV) to > 10²⁰ eV, with a power law of $dN/dE = E^{-2.7}$ to $E^{-3.0}$
- What is the origin (PeVatron) of Galactic CRs (< ~3 PeV)? Supernova remnants? Galactic center?

Galactic Center Region

- Massive black hole $(4 \times 10^6 M_{\odot})$ at Sgr A^{*} (bright radio source)
- Point source $\frac{\dot{q}}{E}$ SS J1745–290 at Str A* and diffuse gamma-ray emission
- Diffuse component has a cutoff energy of 2.9 PeV (68% conf.) → PeVatron?

Cherenkov Telescope Array (CTA)

cherenkov telescope array

Small-Sized Telescope (SST) Dia.:4 m Energy:5–300 TeV N_{Tel}:0@North,70@South

Image Credit: G. Pérez, IAC, SMM

High-energy Frontier by CTA SSTs

CTA Consortium arXiV:1709.07997

Three SST Designs → SST Harmonization

- CTA had a design review process to "harmonize" the different SST designs (3 cameras and 3 telescopes) since May 2018
- CHEC and ASTRI designs were finally chosen in June 2019 (to be further improved)
- **CTA** Nagoya group will continue working on electronics, SiPM, software, and optics simulation

Crab Observations by an SST Prototype (CHEC-ASTRI)

https://www.cta-observatory.org/chec-achieves-first-light-on-astri/

- Two observation campaigns were held on Mt. Etna, Italy in 2019 (but with very early SiPM product)
- Additional test observations canceled due to mirror re-coating and COVID-19

Pixel Amplitude (p

Schwarzschild–Couder Configuration with SiPM Camera

- **Aspherical** primary/secondary mirrors for wide FOV (< 10°) with good angular resolution
- Wider FOV brings fast survey and wider effective area for higher-energy photons
- Large angular distribution (30–60°) of angles of incidence on SiPMs

S14521-8649 (Coated) and S14521-8648 (Uncoated)

- Uncoated SiPMs (thin SiO₂ and SiN layers only) is preferred for CTA to reduce the optical crosstalk rate (See Nakamura et al. 2018)
- But thin protection layers behave as multilayer coating, thus wavelength- and angulardependent photodetector efficiency (PDE) will appear (30–60° for SST)

Measurement of Single APD-Cell Reflectance (50 µm, Normal Incidence)

- Bumpy reflectance was observed, explaining the bumpy PDE
- **Eight different APD cells in the same channel show different peak positions**
 - → Can be explained if the SiO2 thickness is not uniform (typ. ±30 nm)

Measurement of Single APD-Cell Reflectance (50 µm, Normal Incidence)

- Bumpy reflectance was observed, explaining the bumpy PDE
- **Eight different APD cells in the same channel show different peak positions**
 - → Can be explained if the SiO2 thickness is not uniform (typ. ±30 nm)

Multilayer Simulation

- Measured the thickness of the layers and identified the materials (not allowed to make it public)
- Multilayer simulation by **ROBAST** (first talk after break) roughly reproduces the measurement
- Thickness non-uniformity is not taken into account

PDE Measurement Rel. to Normal Incidence (635 nm)

- Bumpy PDE vs angle was obtained as expected
- Single multilayer simulation only roughly reproduce the measured PDE vs angle
- Need to measure how uniform the SiO₂ thickness is to reproduce the measurements
- **LED** spectrum ($\Delta\lambda \sim 15$ nm) is convoluted in simulation

PDE Measurement Rel. to Normal Incidence (635 nm)

- Bumpy PDE vs angle was obtained as expected
- Single multilayer simulation only roughly reproduce the measured PDE vs angle
- Need to measure how uniform the SiO₂ thickness is to reproduce the measurements
- **LED** spectrum ($\Delta\lambda \sim 15$ nm) is convoluted in simulation

PDE Measurement Rel. to Normal Incidence (310 nm)

 Peaks and valleys are smoothed out because the LED spectrum is wider than the wavelength dependency

PDE Measurement Rel. to Normal Incidence (830 nm)

Summary and Plans

- "The" SST design has been chosen from 3 camera and 3 optics designs after the "SST Harmonization" process in CTA
- Prototype Schwarzschild–Couder (SC)telescopes for the CTA Medium- and Small-sized Telescopes constructed (see backup)
- First realization of the SC configuration ever
- SiPM PDE has non-negligible angular dependence when resin coating is removed for CTA
- Characterized by both measurement and ROBAST simulation
- Angular-dependent PDE will be taken into account in future CTA simulations and calibration