CTA報告171：小口径望遠鏡用 SiPMの光検出効率の入射角度依存性

奥村 曉 1,2
黒田裕介 1，古田和浩1，田島宏康 1 ，他 CTA Consortium
1 名古屋大学 宇宙地球環境研究所（ISEE）
2 名古屋大学 素粒子宇宙起源研究所（KMI）

2020 年 9 月 15 日＠日本物理学会 2020 年秋季大会

Cosmic-ray Hadron Spectrum

:. $\sim 10^{8} \mathrm{eV}(\sim 100 \mathrm{MeV})$ to $>10^{20} \mathrm{eV}$, with a power law of $\mathrm{dN} / \mathrm{d} E=E^{-2.7}$ to $E^{-3.0}$
:. What is the origin (PeVatron) of Galactic CRs (< ~3 PeV)? Supernova remnants? Galactic center?

Galactic Center Region

```
H.E.S.S. (2016)
```


:. Massive black hole $\left(4 \times 10^{6} M_{\odot}\right)$ at Sgr A* (bright radio source)
:. Point source HESS J1745-290 at Str A* and diffuse gamma-ray emission
:. Diffuse component has a cutoff energy of 2.9 PeV (68% conf. $) \rightarrow$ PeVatron?

Cherenkov Telescope Array (CTA)

Small-Sized Telescope (SST)
Dia. 4 m
Energy : 5-300 TeV
$N_{\text {Tel }}: 0$ @ North, 70 @ South

Image Credit: G. Pérez, IAC, SMM

High-energy Frontier by CTA SSTs

CTA Consortium arXiV:1709.07997

Three SST Designs \rightarrow SST Harmonization

Compact High-Energy Camera (CHEC)

Credit: Christian Föhr (MPIK)

:. CTA had a design review process to "harmonize" the different SST designs (3 cameras and 3 telescopes) since May 2018
:. CHEC and ASTRI designs were finally chosen in June 2019 (to be further improved)
:. CTA Nagoya group will continue working on electronics, SiPM, software, and optics simulation

Crab Observations by an SST Prototype (CHEC-ASTRI)

:. Two observation campaigns were held on Mt. Etna, Italy in 2019 (but with very early SiPM product)
.. Additional test observations canceled due to mirror re-coating and COVID-19

Schwarzschild-Couder Configuration with SiPM Camera

:. Aspherical primary/secondary mirrors for wide FOV (<10 $)$ with good angular resolution
:. Wider FOV brings fast survey and wider effective area for higher-energy photons
:. Large angular distribution (30-60) of angles of incidence on SiPMs

S14521-8649 (Coated) and S14521-8648 (Uncoated)

S14521-8649 ($\left.6 \times 6 \mathrm{~mm}^{2}, 75 \mu \mathrm{~m}, 16 \mathrm{ch} \times 4\right)$

Measured by Hamamatsu (at normal incident)

:. Uncoated SiPMs (thin SiO_{2} and SiN layers only) is preferred for CTA to reduce the optical crosstalk rate (See Nakamura et al. 2018)
:. But thin protection layers behave as multilayer coating, thus wavelength- and angulardependent photodetector efficiency (PDE) will appear (30-60 for SST)

Measurement of Single APD-Cell Reflectance (50 $\mu \mathrm{m}$, Normal Incidence)

:. Bumpy reflectance was observed, explaining the bumpy PDE
:. Eight different APD cells in the same channel show different peak positions \rightarrow Can be explained if the SiO 2 thickness is not uniform (typ. $\pm 30 \mathrm{~nm}$)

Measurement of Single APD-Cell Reflectance (50 $\mu \mathrm{m}$, Normal Incidence)

:. Bumpy reflectance was observed, explaining the bumpy PDE
:. Eight different APD cells in the same channel show different peak positions \rightarrow Can be explained if the SiO 2 thickness is not uniform (typ. $\pm 30 \mathrm{~nm}$)

Multilayer Simulation

:. Measured the thickness of the layers and identified the materials (not allowed to make it public)
:. Multilayer simulation by ROBAST (first talk after break) roughly reproduces the measurement
:. Thickness non-uniformity is not taken into account

PDE Measurement Rel. to Normal Incidence (635 nm)

:. Bumpy PDE vs angle was obtained as expected
:. Single multilayer simulation only roughly reproduce the measured PDE vs angle
:. Need to measure how uniform the SiO_{2} thickness is to reproduce the measurements
:. LED spectrum ($\Delta \lambda \sim 15 \mathrm{~nm}$) is convoluted in simulation

PDE Measurement Rel. to Normal Incidence (635 nm)

:. Bumpy PDE vs angle was obtained as expected
:. Single multilayer simulation only roughly reproduce the measured PDE vs angle
:. Need to measure how uniform the SiO_{2} thickness is to reproduce the measurements
:. LED spectrum ($\Delta \lambda \sim 15 \mathrm{~nm}$) is convoluted in simulation

PDE Measurement Rel. to Normal Incidence (310 nm)

:. Peaks and valleys are smoothed out because the LED spectrum is wider than the wavelength dependency

PDE Measurement Rel. to Normal Incidence (830 nm)

Summary and Plans

:. "The" SST design has been chosen from 3 camera and 3 optics designs after the "SST Harmonization" process in CTA
:. Prototype Schwarzschild-Couder (SC)telescopes for the CTA Medium- and Small-sized Telescopes constructed (see backup)
:. First realization of the SC configuration ever
:. SiPM PDE has non-negligible angular dependence when resin coating is removed for CTA
:. Characterized by both measurement and ROBAST simulation
:. Angular-dependent PDE will be taken into account in future CTA simulations and calibration

