CTA報告169: CTA大口径望遠鏡2-4号機 焦点面カメラモジュールの 組立および性能試験(II)

高橋光成^A, 猪目祐介 ^A, 今川要^B, 岩村由樹^A, 大岡秀行 ^A, 岡知彦^B, 岡崎奈緒^A, 奥村曉^{C, D}, 折戸玲子^E, 梶原侑貴^B, 片桐秀明^F, 川村孔明^G, 櫛田淳子^H, 窪秀利^B, 郡司修一^I, 小林志鳳^A, 齋藤隆之^A, 櫻井駿介 ^A, 佐々木寅旭^J, 鈴木萌^F, 砂田裕志^J, 立石大^J, 田中真伸^K, 塚本友祐^G, 手嶋政廣^{A, L}, 寺田幸功^J, 中森健之^I, 生天目康之^H, 西嶋恭司^H, 野上優人^F, 野崎誠也^B, 野田浩司 ^A, Daniela Hadasch ^A, 古田智也^H, Daniel Mazin ^{A, L}, 山本常夏^G, 吉田龍生^F, 他 CTA-Japan Consortium, 池野正弘^{K, M}, Antonios Dettlaff^L

(所属)

東大宇宙線研 ^, 京大理^B, 名大ISEE^C, 名大KMI^D, 徳島大理工^E, 茨城大理^F, 甲南大理工^G, 東海大理^H, 山形大理^I, 埼玉大理^J、 KEK素核研^K, マックスプランク物理^L, Open–It^M

●カメラモジュール:7本の光電子増倍管(PMT)とア ンプ、集光器、読み出し基板、制御基板などから成る ●望遠鏡あたり265モジュールでカメラが構成される ♥PMTの変更点

- ・段数を8段から7段に
 - 比較的低ゲインでもパルス幅を短くでき、寿命の改善 を見込める

➡読み出し基板の変更点

- ・サンプリング時刻較正のためのサイン波生成回路を搭載
- 供給電圧および温湿度のモニタリング回路を搭載
- ・モジュール間のトリガー時刻のばらつきを抑えるため、ト

リガー信号にFPGAをバイパスさせる

LST1号機用カメラモジュール試験については野崎他(18年年会)を参照

LST2-4号機力メラモジュールのLST1からの主な変更点

カメラモジュール

動作確認·特性評価試験

- ■LST 2-4用約1,000個のカメラモジュール組み立てを ほぼ完了
- ■効率化のため、PMTについてはモジュールに組んで から試験した
 - ・LST1では先だってPMT単体の試験を実施したがエラー 率が低かった事を踏まえた
- ●2段階に分けて組み立て・試験を実施した
 - 1.2019年6月-8月、柏市の宇宙線研究所で220モジュー ルを組み立て・試験した
 - 2.2020年1月-3月、テネリフェ島のIAC (Institute of

Astrophysics of the Canary Islands) オフィスで800モ

ジュールを組み立て、うち437モジュールを試験した シ測定結果はデータベースに登録してカメラの開発・ 運用・保守に活用する

IACオフィスでの 組み立て作業風景

 \mathbb{H} \sum Х 5 \sum $_$ $\sum_{i=1}^{n}$ +

€2つのパートからなる

◎読み出し基板単体の試験(PMTオフ、 信号源: テストパルス) ➡接続先の諸基板との通信 ₩ドミノサンプリング回路のオフ セット値 *[♀]ノイズレベル ■*タイミングジッター ♀リニアリティ ♀パルス幅 ◇入力チャンネル間のクロストーク
 ◎温湿度計 ♀サイン波生成回路

S モジュール全体の試験(PMTオン、 信号源:レーザーダイオード) ♥PMT運用電圧(ゲイン40,000を与) える印加電圧) ♀パルス幅 ●シグナル-ノイズ比 ♥リニアリティ *[♀]*レートスキャン ●アフターパルス発生確率

試験結果とリカバリの見通し

読み出し基板リニアリティ レートスキャン PMTアフターパルス PMT出力 読み出し基板クロストーク 読み出し基板出力電荷 読み出し基板ノイズ モジュールS/N 読み出し基板EEPROM PMTゲイン PMT電圧モニタリング PMTリニアリティ その他 $\left(\right)$

→再測定・個別に調査 →PMTを交換する →PMTを修理または交換する →解析法を再検討 →解析法を再検討 →個別に調査 →PMTを交換する →原因判明済み、修正を行う →PMTまたはプリアンプを交換する → PMTを修理する →PMTを交換する →個別に調査 15 5 10

₽MTをオフにした状態で信号読み出し基板単体の試験を行った

11

PMT運用電圧

- 定した
 - わせ(アナログサムトリガー)が出来なくなる

♀望遠鏡はPMTのゲインがおよそ40,000になるよう運用する➡このゲインを与える印加電圧を測

・PMT間で運用電圧の差が大きすぎると信号出力のタイミングがずれ、トリガー信号の足し合

Ο.υ σ F² fit 1.14 F² sbt 1.56

¹⁰ ◆光量が1光電子/パルス以下の微弱な光を照 射し、1光電子に対するシグナル/ノイズ(S/ M)比を測定

 F^{2} fit 1.29 F^{2} sbt 1.41

10²

10³

パルス時間幅

彩約300 MHzで1光電子が入射する夜光バックグ

ラウンドの影響を抑えるために重要

♀高速(~80 ps)のパルス光を照射

多数のイベントを平均した波形をガウス関数で フィットし、標準偏差を半値全幅に変換

アフターパルス発生確率

 ・望遠鏡のエネルギー閾値を決定する要因の一つ
 ・

 ・経年や増倍過程に伴う増減がある

•参照: 櫻井他@18年年会

●強いパルス光を照射し、2us後までの電荷が4 光電子相当以上のアフターパルスをカウント

●多くのPMTは要求の0.02%以下を満たす ●平均±標準偏差: 0.0176±0.0003% ●ヘリウムイオンと思われる成分が最も多い ●一部はアルゴン(もしくはCO₂)イオン も目立つ

まとめ

♀CTA大口径望遠鏡2, 3, 4号機建造に向け、カメラモジュールの製作・試験を行ってきた •効率化のため、読み出し基板とPMT別々ではなく統合した状態で試験した ・テネリフェ島のIACオフィスでは、19モジュールを同時に測定できる組み立て・分解可能

なシステムを構築

♀新たに搭載した機能は想定通り動作している ♀これまでにおよそ望遠鏡2基分のモジュールについて合格と判定

•不合格率は約7%だが最終的には5%以下にできる見込み

 ・このペースであれば望遠鏡3基分は問題無く確保できそう。 →低エネルギー閾値実現に必要な良好なノイズ特性・時間特性を示している ●2021年初めから3月ごろにかけて残りのモジュールの試験と、不合格だったモジュールのデバッ グを行う予定

