Schwarzschild－Couder 型の CTA 小•中口径望遠鏡の開発状況

奥村 曉 1,2
黒田裕介1，古田和浩1，田島宏康1，片桐秀明3，
他 CTA Consortium

1 名古屋大学 宇宙地球環境研究所（ISEE）
2 名古屋大学 素粒子宇宙起源研究所（KMI）
3 茨城大学理学部

2020年9月9日＠日本天文学会2020年秋季年会

Cosmic-ray Hadron Spectrum

:. $\sim 10^{8} \mathrm{eV}(\sim 100 \mathrm{MeV})$ to $>10^{20} \mathrm{eV}$, with a power law of $\mathrm{dN} / \mathrm{d} E=E^{-2.7}$ to $E^{-3.0}$
:. What is the origin (PeVatron) of Galactic CRs (< ~3 PeV)? Supernova remnants? Galactic center?

Galactic Center Region

```
H.E.S.S. (2016)
```


:. Massive black hole $\left(4 \times 10^{6} M_{\odot}\right)$ at Sgr A* (bright radio source)
:. Point source HESS J1745-290 at Str A* and diffuse gamma-ray emission
:. Diffuse component has a cutoff energy of 2.9 PeV (68% conf. $) \rightarrow$ PeVatron?

High-energy Frontier by CTA SSTs

CTA Consortium arXiV:1709.07997

High-energy Frontier by CTA SSTs

CTA Consortium arXiV:1709.07997

High-energy Frontier by CTA SSTs

CTA Consortium arXiV:1709.07997

High-energy Frontier by CTA SSTs

CTA Consortium arXiV:1709.07997

High-energy Frontier by CTA SSTs

CTA Consortium arXiV:1709.07997

Cherenkov Telescope Array (CTA)

Cherenkov Telescope Array (CTA)

cherenkov telescope array

Cherenkov Telescope Array (CTA)

Cta

cherenkov telescope array

Cherenkov Telescope Array (CTA)

Large-Sized Telescope (LST)

Dia. : 23 m
Energy: 20-150 GeV
$N_{\text {Tel }}: 4$ @ North, 4 @ South

Cherenkov Telescope Array (CTA)

Cherenkov Telescope Array (CTA)

Small-Sized Telescope (SST)

Dia. : 4 m
Energy : 5-300 TeV
$N_{\text {Tel }}: 0$ @ North, 70 @ South

Cherenkov Telescope Array (CTA)

Schwarzschild-Couder Telescope (SCT)
Dia. : 10 m

Davies-Cotton Configuration

:. Another standard optics design in Cherenkov telescopes (Parabola for LSTs)
:. Initially proposed for solar power plants
:. Wide field-of-view (FOV), but thus low angular resolution

Schwarzschild-Couder Configuration

Vassiliev+ (2007)

:. Aspherical primary and secondary mirrors to achieve wide FOV and better resolution at the same time
:. Wider FOV brings fast survey and wider effective area for higher-energy photons
:. Finer shower-image resolution (\rightarrow higher sensitivity) and compact camera (\rightarrow less expensive) are expected
:. Initially proposed by the CTA US group for MSTs

Schwarzschild-Couder Proposals for CTA

Schwarzschild-Couder MST

:. Schwarzschild-Couder MST (SCT) with 10-meter diameter for MST extension

- US, Italy, Germany, Mexico, and Nagoya
- Japanese group contributions in SiPM, electronics, MC, and software
:. 4-meter SC SST \times camera design chosen to be the final SST design from three proposals in June 2019
- Similar Japanese contributions but more active in SST

Need Compact Cameras with SiPMs

:. The concave secondary mirrors make the plate scales ($\equiv 1 / f$) large and enable us to build compact cameras
:. Silicone photomultipliers (SiPMs) are used instead of conventional photomultipliser tubes (PMTs)

SST Optical System

0
:. Achieved good enough optical resolution matching the SST pixel size
:. First realization of the Schwarzschild-Couder configuration ever

SST Crab Observations: Detection at 5.4 б

:. "ASTRI" camera (lead by Italian groups) successfully detected gamma-ray signal from the Crab Nebula
:. Combination of the Schwarzschild-Couder and a SiPM camera verified

Another (Our) SST Camera Test Observations

.. "Our" camera also succeeded in air-shower observations on the same prototype telescope (replaceable with the Italian camera)
:. Additional test observations canceled due to mirror re-coating and COVID-19

Another (Our) SST Camera Test Observations

.. "Our" camera also succeeded in air-shower observations on the same prototype telescope (replaceable with the Italian camera)
:. Additional test observations canceled due to mirror re-coating and COVID-19

Schwarzschild-Couder MST Optical System

:. 2.5 times larger than the SST optical system
:. More number of segmented mirrors, thus more complex
:. Optical alignment was successfully finished

Schwarzschild-Couder MST Optical System

:. 2.5 times larger than the SST optical system
:. More number of segmented mirrors, thus more complex
:. Optical alignment was successfully finished

Crab Observations by Prototype Schwarzschild-Couder

:. Crab Nebular detection at 8.3σ, while the prototype FOV is still limited

Crab Observations by Prototype Schwarzschild-Couder

:. Crab Nebular detection at 8.3σ, while the prototype FOV is still limited

Summary and Plans

:. Prototype Schwarzschild-Couder (SC)telescopes for the CTA Medium- and Small-sized Telescopes constructed
:. First realization of the SC configuration
:. Both succeeded in air-shower Cherenkov observations and Crab Nebula detection with prototype SiPM cameras
:. Prototype SC-MST will be upgraded with full FOV coverage with more SiPM tiles and new electronics
:. SST is going to finalize the optics and camera designs
:. New SST prototype(s) will be built and tested before the pre-production phase

