Schwarzschild–Couder 光学系を 用いた CTA 小・中口径望遠鏡の開発

奥村 曉¹、朝野彰¹、田島宏康¹、中村裕樹¹、山根暢仁¹ 片桐秀明²、重中茜²、他 CTA Consortium

> ¹名古屋大学 宇宙地球環境研究所 (ISEE) ²茨城大学理学部

> > 日本天文学会 2017 年 秋季年会

oxon@mac.com

Cherenkov Telescope Array (CTA)

Cherenkov Telescope Array (CTA)

Cherenkov Telescope Array (CTA)

Small-Sized Telescope (SST) 70 SSTs @ South D = 4 mFOV ~9° E = 5 TeV - 300 TeV Schwarzschild-Couder Telescope (SC-MST) 25 SCTs @ South D = 9.6 m FOV = 8° E = 200 GeV - 10 TeV

SC-MST

SST-2M

(GCT)

SST-2M (ASTRI)

MST

LST

SST-1M

4

The Schwarzschild–Couder (SC) Design

- Wide FOV aplanatic design with primary and secondary mirrors, invented by Schwarzschild (1905) and Couder (1926)
- Proposed for ground-based gamma-ray telescopes in 2007
- Will achieve wider FOV (~8°) and higher resolution (< ~0.04°) with a compact camera

Improved Optical Resolution

- Optical resolution will be improved ($0.1^\circ \rightarrow < 0.05^\circ$)
- Compact and less expensive camera with small pixels (~2000 \rightarrow > 10000 pixels)

CTA Prototypes of Schwarzschild–Couder

SC-MST and 2M-SST (GCT) are being developed by ISEE (Nagoya), US, and Europe

- Camera development, optics simulation, and software development by ISEE
- 2M-SST (ASTRI) is also being developed by Italy

Camera Prototype for 2M-SST (GCT)

- 2048 pixels with multi-anode PMTs (to be updated to silicon photomultipliers)
- Leapable of 1-ns frame "video" recording (i.e., 1 GHz) for Cherenkov flashes (~10 ns)
- Installed on the prototype telescope in Nov 2015

Cherenkov Showers

PeV Cosmic Rays

- Galactic cosmic rays up to ~PeV energies
- Galactic Center and SNRs are leading candidates of PeVatrons

CTA Science and the Key Science Projects (KSPs)

- Dark matter
- **L KSP: Galactic Center (525 + 300 hours)** Sgr A* + Halo
- **KSP: Galactic Plane Survey (1020 + 600 hours)**
- **KSP: LMC Survey (340 + 150 hours)**
- KSP: Extragalactic Survey
- KSP: Transients

L KSP: Cosmic Ray PeVatrons (250 + 50 hours)

Candidates from GPS + RX J1713

Typical obs. time ~50 hours per object

- KSP: Star Forming Systems
- KSP: Active Galactic Nuclei
- KSP: Clusters of Galaxies
- Non-Gamma-ray Science

"Science with CTA" will be published soon

Point Source Sensitivity

Point Source Sensitivity

Angular Resolution

H.E.S.S. Galactic Plane Survey (as of 2012)

CTA View of the Galactic Plane (Simulation)

CTA View of RX J1713.7–3946 (Simulation)

Nakamori *et al*. (2015)

- CTA telescopes with Schwarzschild–Couder designs are being prototyped for MSTs and SSTs
- Succeeded in imaging Cherenkov showers for the first time ever in CTA
- Wider FOV, higher angular resolution, and ~100 telescopes will extend the view of very-high-energy sky
 - Galactic plane survey and PeVatron search
 - Detailed study of SNRs
 - Galactic Center